Sample-Based Matroid Prophet Inequalities

(me)

Hu Fu Pinyan Lu Zhihao Gavin Tang (Shanghai University of Finance and Economics)

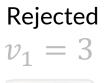
Hongxun Wu (UC Berkeley)

Jinzhao Wu (Yale)

Qianfan Zhang (Princeton)

Single-item prophet inequality

- Given n independent distributions \mathcal{D}_1 , \mathcal{D}_2 , ..., \mathcal{D}_n
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Decide to accept/reject v_i immediately and irrevocably
- Goal: maximize the (expected) accepted value
 - While a prophet can get $\mathbf{E}[\max_i v_i]$



Rejected

$$v_2 = 1$$

Accepted!

$$v_3 = 6$$

Prophet's value

$$v_4 = 8$$

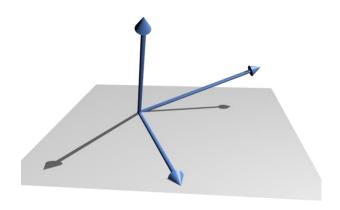
Single-item prophet inequality

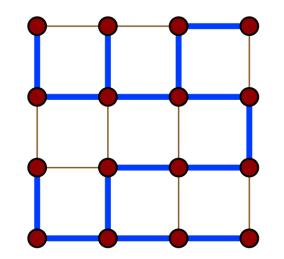
- Given n independent distributions \mathcal{D}_1 , \mathcal{D}_2 , ..., \mathcal{D}_n
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Decide to accept/reject v_i immediately and irrevocably
- Goal: maximize the (expected) accepted value
 - While a prophet can get $\mathbf{E}[\max_i v_i]$
- [Krengel, Sucheston, Garling '78] There exists an algorithm with value $\geq \frac{1}{2} \mathbf{E} \left[\max_{i} v_{i} \right]$

Different feasibility constraints?

- At most *k* items
 - *k*-uniform matroids
- Linearly independent set of vectors
 - Linear matroids

Graphical matroids





Matroid prophet inequalities

- Given $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n$ and a family of feasible sets $\mathcal{F} \subseteq \mathbf{2}^{[n]}$ that is a matroid
- At each step i = 1, 2, ..., n
 - See $v_i \sim D_i$
 - Decide to accept/reject v_i
 - **Feasibility:** Must keep set of accepted items $A \in \mathcal{F}$
- Goal: maximize the (expected) sum of accepted values
 - While a prophet can get $\mathbf{E}[\max_{S \in \mathcal{F}} \sum_{i \in S} v_i]$
- [Kleinberg, Weinberg '12] There exists an algorithm with value $\geq \frac{1}{2} \mathbf{E} \left[\max_{S \in \mathcal{F}} \sum_{i \in S} v_i \right]$
- [Hajiaghayi, Kleinberg, Sandholm '07] [Chawla, Hartline, Malec, Sivan '10] Applications to auctions
 - But often only samples to distribution is available!

Sample-based prophet inequalities

- Given K independent samples from $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n$ each and $\mathcal{F} \subseteq 2^{[n]}$
- At each step i = 1, 2, ..., n
 - See $v_i \sim D_i$
 - Decide to accept/reject v_i subject to feasibility constraint $\mathcal F$
- Goal: maximize the (expected) sum of accepted values
- [Azar, Kleinberg, Weinberg '14] [Caramanis, Dütting, Faw, Fusco, Lazos, Leonardi, Papadigenopoulos, Pountourakis, Reiffenhäuser '22] [Kaplan, Naori, Raz '24] [Correa, Dütting, Fischer, Schewior '19] [Rubinstein, Wang, Weinberg '20] [Kaplan, Naori, Raz '20] [Correa, Dütting, Fischer, Schewior, Ziliotto '21] [Correa, Cristi, Epstein, Soto '23] [Correa, Cristi, Epstein, Soto '20] [Cristi, Ziliotto '24] ...

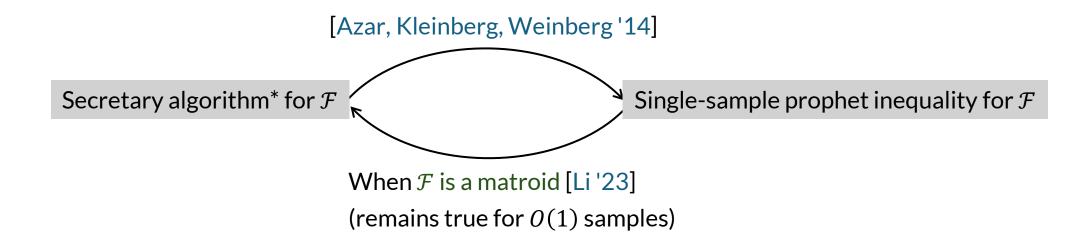
Sample-based prophet inequalities

- Single-sample
 - Single-item prophet inequalities [Rubinstein, Wang, Weinberg ,20]
 - Special matroids [Azar, Kleinberg, Weinberg '14] [Caramanis, Dütting, Faw, Fusco, Lazos, Leonardi, Papadigenopoulos, Pountourakis, Reiffenhäuser '22]
 - Matchings [Caramanis, Dütting, Faw, Fusco, Lazos, Leonardi, Papadigenopoulos, Pountourakis, Reiffenhäuser '22] [Kaplan, Naori, Raz '24]

Sample-based matroid prophet inequalities

- <u>Secretary problem</u>: values are chosen adversarially, but items arrive in a uniformly random order
 - Long-standing open question: O(1)-competitive secretary algorithm for general matroids

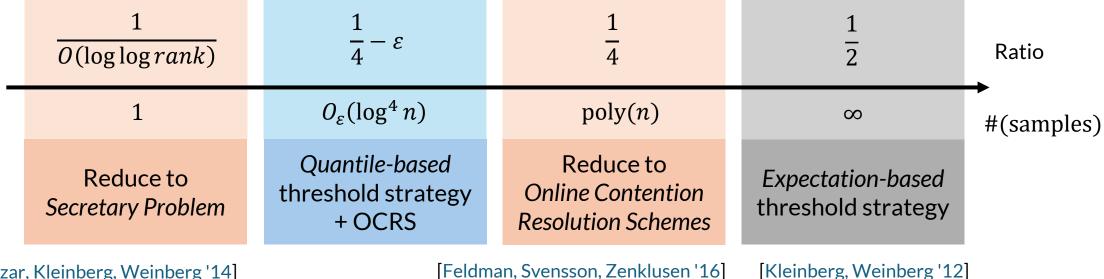
O(1)-competitive matroid prophet inequality with O(1) samples



Sample-based matroid prophet inequalities:

Existing results

This work

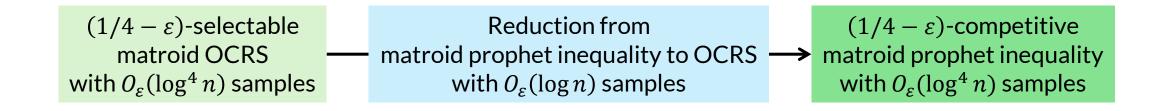


[Azar, Kleinberg, Weinberg '14]

[Lachish '14]

[Feldman, Svensson, Zenklusen '14]

Our framework



Threshold strategies for single-item

• Idea: accept when $v_i \geq T$

- [Samuel-Cahn '84] Median-based $T = Median(\max_{i} v_i)$
 - Don't know how to generalize to matroid
- [Kleinberg, Weinberg '12] Expectation-based $T = \frac{1}{2} E[\max_{i} v_{i}]$
 - Lack of concentration

Median-based threshold for matroids

- $\tau_i(v_{-i})$: minimum weight for i to be in OPT
- Let i be active whenever $v_i \ge T_i = \text{Median}(\tau_i)$
 - Easy to estimate by $O(\log n)$ samples
- Ideally: accept every active items

Issue: Feasibility

The active set might not be feasible:

$$\{i: v_i \geq T_i\} \notin \mathcal{F}$$

→ Rounding via OCRS

Issue: Optimality

The active set must approximate the optimal set, e.g.,

$$\mathbf{E}\left[\sum_{i\in[n]}v_i\cdot\mathbf{1}[v_i\geq T_i]\right] > \frac{1}{2}\,\mathbf{E}\left[\sum_{i\in\mathrm{OPT}}v_i\right]$$

→ Proof via a global argument

Optimality: local argument fails

Issue: Optimality

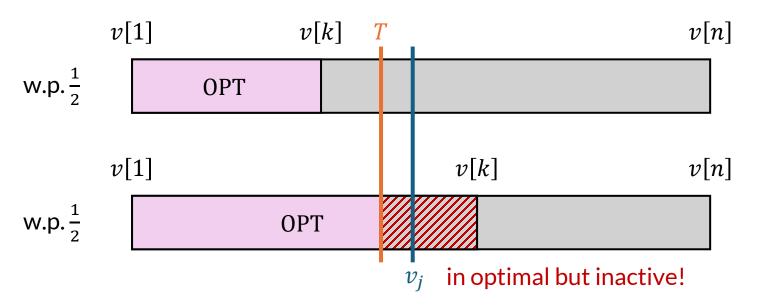
The active set must approximate the optimal set, e.g.,

$$\mathbf{E}[\sum(Active\ items)] > \frac{1}{2}\ \mathbf{E}[\sum(\mathsf{OPT})]$$

- In k-uniform matroid, $\tau_i = v[k]$ (kth largest value)
 - A single threshold T = Median(v[k]) for all i

Ideally:

$$E\left[v_j \cdot 1[v_j \geq T]\right] \geq \frac{1}{2} \cdot E\left[v_j \cdot 1[v_j \in OPT]\right]$$



- Consider an item j with deterministic value $v_j = T \varepsilon$
 - $v_j \in \text{OPT w.p.} \frac{1}{2} \to \text{contribution to } \mathbf{E}[\sum (\text{OPT})] \text{ is } \frac{T-\varepsilon}{2}, \text{ while never active}$

Optimality for general matroids

• Benchmark: maximum basis B of thresholds $T_i = \text{Median}(\tau_i)$

$$\mathbf{E}[\Sigma(\mathsf{OPT} \cap Active)] \ge \frac{1}{2} \mathbf{E}[\Sigma(B)] > \mathbf{E}[\Sigma(\mathsf{OPT} \cap Inactive)]$$

- Key tool: Weighted Strong Basis Exchange Lemma [Buchbinder, Feldman, Garg '19]
- Actual strategy: a single median → multiple quantiles

Issue: Feasibility

The active set might not be feasible:

$$\{i: v_i \geq T_i\} \notin \mathcal{F}$$

Feasibility:

via Online Contention Resolution Schemes

- Each item i is active independently w.p. p_i
 - Fact: $\vec{p} \in (1 + \varepsilon) \cdot \mathcal{P}_{\mathcal{F}}$
- At each step 1,2, ..., n:
 - See whether *i* is active or not
 - If active, decide to accept/reject i subject to feasibility constraint \mathcal{F}
- Goal: maximize *selectability* α such that

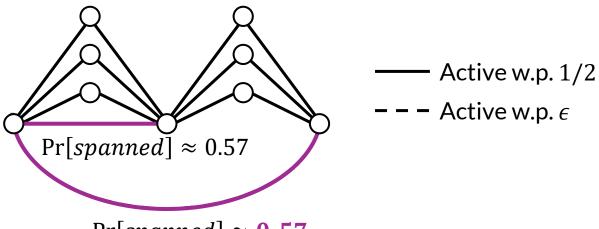
$$\Pr[i \text{ accepted}] \ge \alpha \cdot p_i \quad \forall i \in [n]$$

• [Feldman, Svensson, Zenklusen '16] There exists a $\frac{1}{4}$ -selectable OCRS for matroids.

(Active set)
$$\xrightarrow{\text{losing factor of 4}}$$
 (Feasible set)

Constructing OCRS

- [Feldman, Svensson, Zenklusen '16] There exists a $\frac{1}{4}$ -selectable OCRS for matroids
- Core subroutine Protect(c)
 - *S* ← Ø
 - While (∃ i such that Pr[i spanned by {active items} ∪ S] > c) do
 S ← S ∪ {i}
 - Return S
- Example: a graphical matroid Protect(0.5)



 $Pr[spanned] \approx 0.57$

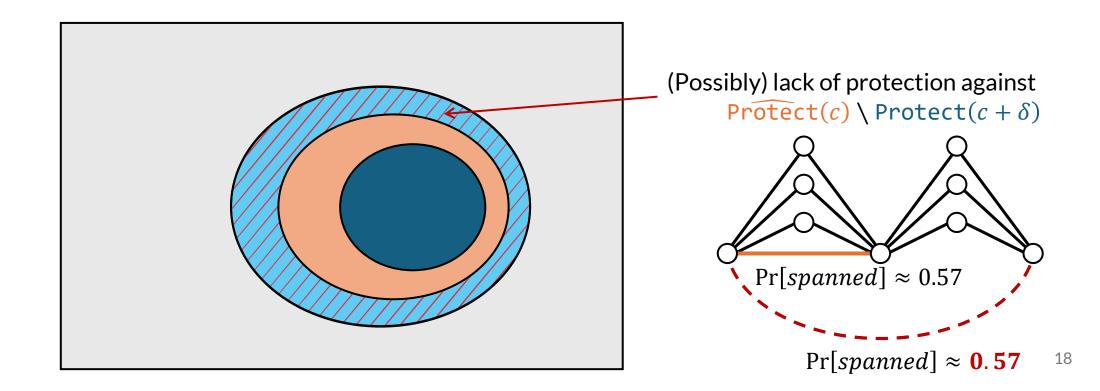
Constructing OCRS from samples

- Protect(c): poly(n) queries in the form $\Pr[\mathbf{i} \text{ spanned by } \{active \ items\} \cup \mathbf{S}] \stackrel{?}{>} c$
- Can be estimated efficiently!
 - By Chernoff bound + union bound, $O(\log n)$ samples suffices (?)
- No because queries are highly adaptive
 - When true answer lies in $[c \varepsilon, c + \varepsilon]$, whether $S \leftarrow S \cup \{i\}$ depends on the error
 - Which further determines later queries!

A sandwiching lemma

• **Lemma**: For any constants c, δ , with high probability

$$Protect(c + \delta) \subseteq Protect(c) \subseteq Protect(c - \delta)$$

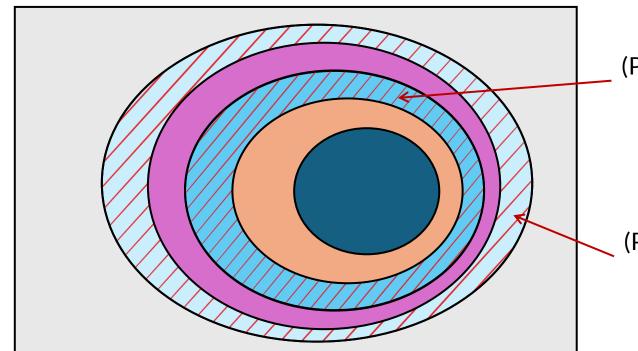


More sandwichings

• **Lemma**: For any constants c, δ , with high probability

$$Protect(c + \delta) \subseteq Protect(c) \subseteq Protect(c - \delta)$$

$$\subseteq Protect(c - 2\delta) \subseteq Protect(c - 3\delta)$$



(Possibly) lack of protection against $Protect(c) \setminus Protect(c + \delta)$

Disjoint!

(Possibly) lack of protection against $Protect(c-2\delta) \setminus Protect(c-\delta)$

Randomization against adaptivity

• Randomize over 2 parameters \rightarrow every item fails w.p. at most $\frac{1}{2}$

- Randomize over $\log n$ parameters \rightarrow every item fails w.p. at most $\frac{1}{\log n}$
 - $O(\log^4 n)$ samples in total

Summary

• Our result:

- Open questions:
 - Matroid OCRS with fewer samples
 - Matroid OCRS better selectability
 - Matroid prophet inequality with fewer samples
 - *O*(1) samples ⇒ matroid secretary conjecture [Li '23]

Thank you!