A Bicriterion Concentration Inequality and
Prophet Inequalities for k-Fold Matroid Unions

To appear at ITCS 2025

Noga Alon, Princeton & Tel Aviv

Nick Gravin, Shanghai University of Finance and Economics
Tristan Pollner, Stanford

Aviad Rubinstein, Stanford

Hongao Wang, Purdue

S. Matthew Weinberg, Princeton

Qianfan Zhang, Princeton

Outline

-

Theorem: Vs € [0,1],t > 0

o

Pr[f(X®)) > E[f(X)] +t] < et

J

“Chernoff-strength” bicriterion concentration

Outline

4 N
Theorem: Vs € [0,1],t > 0

Pr[f(X®)) > E[f(X)] +t] < et
\§ /

/
Theorem: Vk, , no (% + £)-competitive algorithm for

a graphical matroid Fj, . of
-

~

J

“Chernoff-strength” bicriterion concentration

does not suffice
for (1 — €)-prophet inequality

Outline

4 N
Theorem: Vs € [0,1],t > 0

Pr[f(X®)) > E[f(X)] +t] < et

“Chernoff-strength” bicriterion concentration

- J
4)
Theorem: Vk, ¢, no (% + £)-competitive algorithm for does not suffice

for (1 — €)-prophet inequality

a graphical matroid Fj, . of
- /

4)

Theorem: Thereis (1 — O(loik))-competitive algorithm

for any k-fold matroid union F*
_ J

But k-fold matroid unions do

Part |:

A Bicriterion Concentration Inequality

Concentration inequalities

n independent
Bernoullir.v.s

Concentration inequalities

n independent f:10,1}" - Rthatis
Bernoullir.v.s « Monotone
* 1-Lipschitz

Concentration inequalities

n independent £:{0,1}" - Rthatis
<
Bernoullir.v.s . Monotone «——— f@) =f¥)

ifxl- <y foralli
* 1-Lipschitz

Concentration inequalities

n independent £:{0,1}" - Rthatis
<
Bernoullir.v.s . Monotone «——— f@) =f¥)

ifxl- < Vi for all i

* 1-Lipschitz \
1f () —fOI < llx—ylly

“Flipping a single input bit
change output by < 1.”

Concentration inequalities

n independent £:{0,1}" - Rthatis
<
Bernoullir.v.s . Monotone «——— f@) =f¥)

ifxl- < Vi for all i

* 1-Lipschitz \
\/ If () —fF)I < llx—yll4

“Flipping a single input bit

h by < 1.
How well does f(X) concentrate change output by <

around u = E[f(X)]?

Concentration inequalities

n independent £:{0,1}" - Rthatis
Bernoullir.v.s . Monotone «——— f@) =f¥)

ifxl- < Vi for all i

* 1-Lipschitz \
\/ If () —fF)I < llx—yll4

“Flipping a single input bit

<)]
How well does f(X) concentrate change output by < 1.

around u = E[f(X)]?

\ Focus on upper tail & small deviationt < u

Prif(X)>u+t]<?

Example: Chernoff bound

n independent

Bernoullir.v.s fx) = z Xi

i€[n]

Example: Chernoff bound

n independent

Bernoullir.v.s fx) = z Xi

i€[n]

Example: Chernoff bound

n independent

Bernoullir.v.s f(x) = z Xi
i€[n]
t2
Prif(X)>u+t]<e 3
\(fort < u) & P

_/Implies standard deviation

s = 0(ym)

Example: submodular functions

n independent f:10,1}" - Rthatis
Bernoullir.v.s « Monotone submodular
* 1-Lipschitz

Example: submodular functions

n independent f:10,1}" - Rthatis
Bernoullir.v.s « Monotone submodular , ,
e.g., matroid rank functions

* 1-Lipschitz

Example: submodular functions

n independent f:10,1}" - Rthatis
Bernoullir.v.s « Monotone submodular , ,
)) e.g., matroid rank functions
* 1-Lipschitz
Concentration for self-bounding functions
[Boucheron/Lugosi/Massart '00]
4)
t2

Example: submodular functions

n independent f:10,1}" - Rthatis
Bernoullir.v.s « Monotone submodular , ,
)) e.g., matroid rank functions
* 1-Lipschitz
Concentration for self-bounding functions
[Boucheron/Lugosi/Massart '00]
4)
t2
Prif(X)>u+t]<e 3u
\(fort < u) & P

_/Implies standard deviation

s = 0(ym)

Example: McDiarmid’s inequality

n independent f:10,1}" - Rthatis
Bernoullir.v.s
* 1-Lipschitz

Example: McDiarmid’s inequality

n independent f:10,1}" - Rthatis
Bernoullir.v.s
* 1-Lipschitz

2t
Prif() > p+tl<e n

Example: McDiarmid’s inequality

n independent f:10,1}" - Rthatis
Bernoullir.v.s
* 1-Lipschitz
2t

Prif() 2 p+t]<em

_ N J

\—/ Implies standard deviation

o = 0@H/n)

Example: McDiarmid’s inequality

n independent

Bernoullir.v.s

f:10,1}" - Rthatis

* 1-Lipschitz
_2e?
Priff(X)Zu+t|<e n
\ A\ Y,

In general, impossible to get
“Chernoff-strength” bound

3 1-Lipschitz f such that f(X):
(Small expectation) u < \/n
(Large deviation) o0 = /n

\—/ Implies standard deviation

o =0Hn)

Result O: a bicriterion concentration

n independent f:10,1}" - Rthatis
Bernoullir.v.s « Monotone
* 1-Lipschitz

Result O: a bicriterion concentration

n independent f:10,1}" - Rthatis
Bernoullir.v.s « Monotone
* 1-Lipschitz

“Scaledown by s > 0”:
seteachX;toOw.p.1—e~*

!

n independent

Bernoullir.v.s
_ (s) y(s) (s)
x© = (x, %, .., %)

Result O: a bicriterion concentration

n independent
Bernoullir.v.s

!

n independent
Bernoullir.v.s

x® = (x99, ., x9)

f:10,1}" - Rthatis
* Monotone
* 1-Lipschitz

_—

“Scaledown by s > 0”: \
seteachX;toOw.p.1—e~*

-

Theorem: Vs € [0,1],t > 0

o

Pr[f(X)) > E[f(X)] + t] < et

Result O: a bicriterion concentration

n independent f:10,1}" - Rthatis
Bernoullir.v.s Monotone
* 1-Lipschitz
|
“Scale down by s > 0 dimension-free!
seteachX;toOw.p.1—e~*

I 4 I)

nindependent Theorem: Vs € [0,1],t > 0

Bernoullir.v.s / pr[f(X(S)) > E[f(X)] + t] < e St é/

— (v y(s) (s)
xX©) = (Xls X, Xy) _)

Result O: a bicriterion concentration

n independent
Bernoullir.v.s

!

n independent
Bernoullir.v.s

x® = (x99, ., x9)

f:10,1}" - Rthatis
* Monotone
* 1-Lipschitz

“Scaledown by s > 0”:
seteachX;toOw.p.1—e~*

_—

|

-

o

Corollary (“Chernoff-strength”): V6 € [0,1],

Pr|f(X®) = (1 + HE[F(N)]] < e O/

~

J

Result O: a bicriterion concentration

Intuition: for f(x), either:

. _ n . » Changes fast:
nlndepeerent f:{0,1}™ - Rthatis Scaling.down” to £(X©) helps
Bernoullir.v.s « Monotone « Changes slow:

. . already concentrates
* 1-Lipschitz FX) Y

“Scaledown by s > 0”:
seteachX;toOw.p.1—e~*

I 4)
Corollary (“Chernoff-strength”): V6 € [0,1],

n independent

Bernoullir.v.s / Pr [f(x(S)) > (1 + 6)E[f()]] < ¢~S°Elf (0]

) — (v(8) y(s) (s)
x© = (x, %, .., %) _ Y,

Result O: a bicriterion concentration

Intuition: for f(x), either:

. _ n . » Changes fast:
nlndepeerent f:{0,1}™ - Rthatis Scaling.down” to £(X©) helps
Bernoullir.v.s « Monotone « Changes slow:

. . already concentrates
* 1-Lipschitz FX) Y

Proof: entropy method with
| F(1) =E le‘ﬂf(xm)]

“Scaledown by s > 0”:
seteachX;toOw.p.1—e~*

I 4)
Corollary (“Chernoff-strength”): V6 € [0,1],

n independent

Bernoullir.v.s / Pr [f(x(S)) > (1 + 6)E[f()]] < ¢~S°Elf (0]

) — (v(8) y(s) (s)
x© = (x, %, .., %) _ Y,

Part ll:

Prophet Inequalities for k-Fold Matroid Unions

Trve Chest

Fake Chest (Mimic)

Prophet inequalities

Prophet inequalities

* Givenn independent distributions D4, D,, ..., D,

Prophet inequalities

* Givenn independent distributions D4, D,, ..., D,
« Ateachstepi =1,2,...,n

* Inspectv; ~ D;

« Accept/reject v; immediately and irrevocably

Prophet inequalities

* Givenn independent distributions D4, D,, ..., D,
« Ateachstepi =1,2,...,n

* Inspectv; ~ D; /— Accept at most 1 item
« Accept/reject v; immediately and irrevocably

Prophet inequalities

* Givenn independent distributions D4, D,, ..., D,
« Ateachstepi =1,2,...,n

* Inspectv; ~ D; /_ Accept at most 1 item
« Accept/reject v; immediately and irrevocably

Prophet inequalities

* Givenn independent distributions D4, D,, ..., D,
« Ateachstepi =1,2,...,n

* Inspectv; ~ D; /—— Accept at most 1 item
« Accept/reject v; immediately and irrevocably

Rejected

Prophet inequalities

* Givenn independent distributions D4, D,, ..., D,
« Ateachstepi =1,2,...,n

* Inspectv; ~ D; /—— Accept at most 1 item
« Accept/reject v; immediately and irrevocably

Rejected

Prophet inequalities

* Givenn independent distributions D4, D,, ..., D,
« Ateachstepi =1,2,...,n

* Inspectv; ~ D; /— Accept at most 1 item
« Accept/reject v; immediately and irrevocably

Rejected Rejected

Prophet inequalities

* Givenn independent distributions D4, D,, ..., D,
« Ateachstepi =1,2,...,n

* Inspectv; ~ D; /— Accept at most 1 item
« Accept/reject v; immediately and irrevocably

Rejected Rejected

Prophet inequalities

* Givenn independent distributions D4, D,, ..., D,
« Ateachstepi =1,2,...,n

* Inspectv; ~ D; /— Accept at most 1 item
« Accept/reject v; immediately and irrevocably

Rejected Rejected Accepted!
U3 — 5 v4_ ~ D4

— 1] ‘

Prophet inequalities

* Givenn independent distributions D4, D,, ..., D,
« Ateachstepi =1,2,...,n

* Inspectv; ~ D; /— Accept at most 1 item
« Accept/reject v; immediately and irrevocably

» Goal: maximize accepted value in expectation
* vs.aprophet who gets E[max; v;]

Rejected Rejected Accepted!
U3 — 5

Prophet inequalities

* Givenn independent distributions D4, D,, ..., D,
« Ateachstepi =1,2,...,n

* Inspectv; ~ D; /— Accept at most 1 item
« Accept/reject v; immediately and irrevocably

» Goal: maximize accepted value in expectation
* vs.aprophet who gets E[max; v;]

Rejected Rejected Accepted! Prophet’s value
U1:6 v2:1 U3:5 v4:8

Prophet inequalities

* Givenn independent distributions D4, D,, ..., D,
« Ateachstepi =1,2,...,n

* Inspectv; ~ D; /— Accept at most 1 item
« Accept/reject v; immediately and irrevocably
a-competitive:

» Goal: maximize accepted value in expectation E[ALG]
« vs.aprophetwho gets E[max; v;] < — E[Prophet] =a
Rejected Rejected Accepted! Prophet’s value

v2:1 U3:5 v4:8

=

Prophet inequalities

* Givenn independent distributions D4, D,, ..., D,
« Ateachstepi =1,2,...,n

* Inspectv; ~ D; / Accept at most 1 item
« Accept/reject v; immediately and irrevocably

. . : : a-competitive:
* Goal: maximize accepted value in expectation E?ALG]

* vs.aprophetwho gets E[max; v;] < — E[Prophet] >«

4)
1 o) e
E-Competltlve Strategy: [Krengel/Sucheston/Garling '78, Samuel-Cahn '84]

Accept first v; > T = Median|[max; v;]

Prophet inequalities

* Givenn independent distributions D4, D,, ..., D,
« Ateachstepi =1,2,...,n

* Inspectv; ~ D; / Accept at most 1 item
« Accept/reject v; immediately and irrevocably

. . : : a-competitive:
* Goal: maximize accepted value in expectation E?ALG]

* vs.aprophetwho gets E[max; v;] < — E[Prophet] >«

4)
1 o) e
E-Competltlve Strategy: [Krengel/Sucheston/Garling '78, Samuel-Cahn '84]

’(\ Accept first v; > T = Median|max; v;]
\

Tight in worst case

Prophet inequalities (general feasibility)

« Givennindependent Dy, D,, ..., D, feasible sets F c 2™
« Ateachstepi =1,2,...,n

e Inspectv; ~ D;

» Accept/reject v; immediately and irrevocably

Prophet inequalities (general feasibility)

« Givennindependent Dy, D,, ..., D, feasible sets F c 2™ S

« Ateachstepi=1,2,..,n downward-closed
* Inspectv; ~ D;
» Accept/reject v; immediately and irrevocably

Prophet inequalities (general feasibility)

* Givennindependent D4,D,, ..., D,,, feasible sets F C 2["]r\
- Ateachstepi =1,2,..,n downward-closed

e Inspectv; ~ D;
» Accept/reject v; immediately and irrevocably é__’

Keep accepted items feasible

Prophet inequalities (general feasibility)

* Givennindependent D4,D,, ..., D,,, feasible sets F C 2["]r\
- Ateachstepi =1,2,..,n downward-closed

e Inspectv; ~ D;
» Accept/reject v; immediately and irrevocably é__’

* Goal: maximize sum of accepted values in expectation
* vs.aprophet who gets E[maxser Yies Vil

Keep accepted items feasible

Prophet inequalities (general feasibility)

* Givennindependent D4,D,, ..., D,,, feasible sets F C 2["]r

« Ateachstepi =1,2,...,n
e Inspectv; ~ D;

» Accept/reject v; immediately and irrevocably é___

* Goal: maximize sum of accepted values in expectation
* vs.aprophet who gets E[maxser Yies Vil

-

%-competitive

when F is matroid
[Kleinberg/Weinberg '12]

~

J

S downward-closed

Keep accepted items feasible

Prophet inequalities (general feasibility)

* Givennindependent D4,D,, ..., D,,, feasible sets F C 2["]r

« Ateachstepi =1,2,...,n
e Inspectv; ~ D;

» Accept/reject v; immediately and irrevocably é___

* Goal: maximize sum of accepted values in expectation
* vs.aprophet who gets E[maxser Yies Vil

-

%-competitive

when F is matroid
[Kleinberg/Weinberg '12]

~

J

S downward-closed

Keep accepted items feasible

-

-

(1-— O(V%))—competitive

when F is k-uniform matroid
[Alaei '14]

~

J

Prophet inequalities (general feasibility)

* Givennindependent D4,D,, ..., D,,, feasible sets F C 2["]r
« Ateachstepi =1,2,...

e Inspectv; ~ D;

» Accept/reject v; immediately and irrevocably é___

* Goal: maximize sum of accepted values in expectation
* vs.aprophet who gets E[maxser Yies Vil

-

%-competitive

when F is matroid
[Kleinberg/Weinberg '12]

~

J

-

-

~
1 o)
(1- O(X/—E))—competltlve
when F is k-uniform matroid

[Alaei '14] NG

S downward-closed

Keep accepted items feasible

F ={S:|S| <k}
“Accept < k items”

Prophet inequalities (general feasibility)

* Givennindependent D4,D,, ..., D,,, feasible sets F C 2["]r
« Ateachstepi =1,2,...

e Inspectv; ~ D;

» Accept/reject v; immediately and irrevocably é__’

* Goal: maximize sum of accepted values in expectation
* vs.aprophet who gets E[maxser Yies Vil

4)
1 o) e
5-compet|t|ve

when F is matroid
[Kleinberg/Weinberg '12]
N J

-

-

~
1 o)
(1- O(X/—E))—competltlve
when F is k-uniform matroid

[Alaei '14] NG

What conditions on F suffice for
(1 — &)-competitive prophet inequality?

S downward-closed

Keep accepted items feasible

F ={S:|S| <k}
“Accept < k items”

Prophet inequalities (general feasibility)

e)
1 o) e
5-compet|t|ve

when F is matroid
[Kleinberg/Weinberg '12]
N J

-

o

~
1 0no
(1-— O(TE))-competltlve
when F is k-uniform matroid

[Alaei '14] N

What conditions on F suffice for
(1 — &)-competitive prophet inequality?

F ={S:|S| <k}
“Accept < k items”

Prophet inequalities (general feasibility)

-

%-competitive

when F is matroid
[Kleinberg/Weinberg '12]

~

J

-

-

~
1 onc
(1-— O(TE))-competltlve
when F is k-uniform matroid

[Alaei '14] N

What conditions on F suffice for
(1 — &)-competitive prophet inequality?

What makes k-uniform matroid easy?

F ={S:|S| <k}
“Accept < k items”

Prophet inequalities (general feasibility)

-

%-competitive

when F is matroid
[Kleinberg/Weinberg '12]

~

J

-

-

~
1 onc
(1-— O(TE))-competltlve
when F is k-uniform matroid

[Alaei '14] N

What conditions on F suffice for
(1 — &)-competitive prophet inequality?

What makes k-uniform matroid easy?

Because of a

?

F ={S:|S| <k}
“Accept < k items”

Prophet inequalities (general feasibility)

-

%-competitive

when F is matroid
[Kleinberg/Weinberg '12]

~

J

-

o

~
1 0no
(1-— O(TE))-competltlve
when F is k-uniform matroid

[Alaei '14] N

What conditions on F suffice for
(1 — &)-competitive prophet inequality?

What makes k-uniform matroid easy?

Because of a
Because it is a union of many matroids?

?

F ={S:|S| <k}
“Accept < k items”

Result 1:; does not suffice

(F): minimum size of infeasible set

Result 1:; does not suffice

(F): minimum size of infeasible set
* k-uniform matroids: k + 1

Result 1:; does not suffice

(F): minimum size of infeasible set
e k-uniform matroids: k + 1
» Graphical matroids: length of shortest cycle

Result 1:; does not suffice

e k-uniform matroids: k + 1 * elements = {edges}

« Graphical matroids: length of shortest cycle » feasible sets = {forests}

N~

Result 1:; does not suffice

e k-uniform matroids: k + 1 * elements = {edges}

« Graphical matroids: length of shortest cycle » feasible sets = {forests}

K e.g.: graphical matroid of n

Result 1:; does not suffice

e k-uniform matroids: k + 1 * elements = {edges}
« feasible sets = {forests}

N

» Graphical matroids: length of shortest cycle

K e.g.: graphical matroid of

Feasible

Result 1:; does not suffice

e k-uniform matroids: k + 1 * elements = {edges}

« Graphical matroids: length of shortest cycle * feasiblesets = {forGStS}

I: A E

Feasible

Result 1:; does not suffice

(F): minimum size of infeasible set
e k-uniform matroids: k + 1
» Graphical matroids: length of shortest cycle

N~

Theorem: Vk, €, no (% + ¢)-competitive algorithm for

a graphical matroid F, . of
-

\

J

Given undirected graph G,
» elements = {edges}
« feasible sets = {forests}

e.g.: graphical matroid of

IR N

Feasible

Result 2: k-fold matroid unions suffice

k-fold union of matroid F:
Feasible S € F* & partitioned into k feasible sets € F

Fr={S;US,U--US,|S,S5,..,S5 €F}

Result 2: k-fold matroid unions suffice

k-fold union of matroid F:
Feasible S € F* & partitioned into k feasible sets € F

Fr={S;US,U--US,|S,S5,..,S5 €F}

o k-fold union of 1-uniform matroid: k-uniform matroid

Result 2: k-fold matroid unions suffice

k-fold union of matroid F:
Feasible S € F* & partitioned into k feasible sets € F

Fr={S;US,U--US,|S,S5,..,S5 €F}

e k-fold union of 1-uniform matroid: k-uniform matroid
» k-fold union of graphical matroids?

Result 2: k-fold matroid unions suffice

k-fold union of matroid F:
Feasible S € F* & partitioned into k feasible sets € F

Fr={S;US,U--US,|S,S5,..,S5 €F}

e.g.: 2-fold union of graphical matroid

e k-fold union of 1-uniform matroid: k-uniform matroid
» k-fold union of graphical matroids?

Result 2: k-fold matroid unions suffice

k-fold union of matroid F:
Feasible S € F* & partitioned into k feasible sets € F

Fr={S;US,U--US,|S,S5,..,S5 €F}

e.g.: 2-fold union of graphical matroid

RN

Feasible

e k-fold union of 1-uniform matroid: k-uniform matroid
» k-fold union of graphical matroids?

Result 2: k-fold matroid unions suffice

k-fold union of matroid F:
Feasible S € F* & partitioned into k feasible sets € F

Fr={S;US,U--US,|S,S5,..,S5 €F}

e.g.: 2-fold union of graphical matroid

e k-fold union of 1-uniform matroid: k-uniform matroid
» k-fold union of graphical matroids?

Feasible Feasible

Result 2: k-fold matroid unions suffice

k-fold union of matroid F:
Feasible S € F* & partitioned into k feasible sets € F

Fr={S;US,U--US,|S,S5,..,S5 €F}

e.g.: 2-fold union of graphical matroid

e k-fold union of 1-uniform matroid: k-uniform matroid
» k-fold union of graphical matroids?

Feasible Feasible

N

Infeasible

Result 2: k-fold matroid unions suffice

k-fold union of matroid F:
Feasible S € F* & partitioned into k feasible sets € F

Fr={S;US,U--US,|S,S5,..,S5 €F}

e.g.: 2-fold union of graphical matroid

e k-fold union of 1-uniform matroid: k-uniformn matroid
» k-fold union of graphical matroids?

4)
Theorem: Thereis (1 — O(/lo%k))-competitive algorithm

for any k-fold matroid union F¥
\ J

Feasible Feasible

Algorithm for k-uniform matroids

Call i whenever v; > T;

Algorithm for k-uniform matroids

carefully chosen thresholds s.t.

Call i whenever v; > T; // E[#(<k

Algorithm for k-uniform matroids

carefully chosen thresholds s.t.
Calli whenever v; > T; // E[#(1<k

log k
)

1. (Dropout) For each i,ignore w.p. O(

Algorithm for k-uniform matroids

carefully chosen thresholds s.t.
Calli whenever v; > T; / E[#(1<k

log k
)

2. (Greedy) Otherwise, accept whenever possible

1. (Dropout) For each i,ignore w.p. O(

Algorithm for k-uniform matroids

carefully chosen thresholds s.t.
Calli whenever v; > T; // E[#(1<k

log k
)

2. (Greedy) Otherwise, accept whenever possible

1. (Dropout) For each i,ignore w.p. O(

Dropout Greedy

arrives

Algorithm for k-uniform matroids

carefully chosen thresholds s.t.
Calli whenever v; > T; // E[#(1<k

log k
)

2. (Greedy) Otherwise, accept whenever possible

1. (Dropout) For each i,ignore w.p. O(

Success w.p.

Dropout Greedy . (1—¢)

arrives

Algorithm for k-uniform matroids

carefully chosen thresholds s.t.
Calli whenever v; > T; // E[#(1<k

log k
)

2. (Greedy) Otherwise, accept whenever possible

1. (Dropout) For each i,ignore w.p. O(

(1 — &)-competitive ratio!

'

Success w.p.

Dropout Greedy . (1—¢)

arrives

Algorithm for k-uniform matroids

carefully chosen thresholds s.t.
Calli whenever v; > T; // E[#(1<k

log k
)

2. (Greedy) Otherwise, accept whenever possible

1. (Dropout) For each i,ignore w.p. O(

(1 — &)-competitive ratio!

) Ignored w.p.
O0(y/logk/k) (
: Success w.p.
: Dropout Greed >
arrives P y (1-¢)

Algorithm for k-uniform matroids

carefully chosen thresholds s.t.
Calli whenever v; > T; // E[#(1<k

log k
)

2. (Greedy) Otherwise, accept whenever possible

1. (Dropout) For each i,ignore w.p. O(

(1 — &)-competitive ratio!

) Ignored w.p.
O0(y/logk/k) (
: Success w.p.
: Dropout Greed .
arrives P :)4 (1—¢)

v

) Failed w.p.?77?

Algorithm for k-uniform matroids

/ S Ignored w.p.

O0(y/logk/k)
Act[ve l Dropout - Greedy
arrives

Algorithm for k-uniform matroids

p S lgnored w.p.

O0(y/logk/k)
Act[ve l Dropout Greedy
arrives

Modest occupancy of S in expectation:

E[|S]] < k- Q(/klogk)

Algorithm for k-uniform matroids

p S lgnored w.p.

O0(y/logk/k)
Act[ve l Dropout Greedy
arrives

Modest occupancy of S in expectation:

E[|S]] < k- Q(/klogk)

Chernoff b$

Algorithm for k-uniform matroids

X Ignored w.p.

O0(y/logk/k)

Active i

Arrives DropoU Greedy
v

Modest occupancy of S in expectation:

E[|S]] < k- Q(/klogk)

g Concentration of occupancy:
Chernoff bound

Pr[| | > E[| |]+0(Jklogk)]§%

Algorithm for k-uniform matroids

p S lgnored w.p.

0(y/logk/k)
Active i Dropout —# Greedy
arrives

Modest occupancy of S in expectation:

E[|S]] < k- Q(/klogk)

g Concentration of occupancy:
Chernoff bound 1

> k] <=
Pr{|S| = k] =

Algorithm for k-uniform matroids

p S lgnored w.p.

0(y/logk/k)
Active i Dropout —# Greedy
arrives ‘

\

M Failed w.p. 1/k
Modest occupancy of S in expectation:
E[|S]] < k- Q(/klogk)

g Concentration of occupancy:
Chernoff bound 1

> k] <=
Pr{|S| = k] =

Algorithm for k-uniform matroids

p S lgnored w.p.

~ Success w.p.

0(y/logk/k)
Active i Dropout —# Greedy
arrives ‘

\

M Failed w.p. 1/k

Modest occupancy of S in expectation:

E[|S]] < k- Q(/klogk)

g Concentration of occupancy:
Chernoff bound 1

> k] <=
Pr{|S| = k] =

" 1-0@/logk/k)

Algorithm for k-uniform matroids

p S lgnored w.p.

0(y/logk/k)
Active i Drol out Greed _ Success w.p.
arrives P | : y 1 - 0(logk/k)
M Failed w.p. 1/k
M d t f . t t. /I\
odest occupancy of S in expectation: :) . S
E[|S|] < k — Q(/klogk) Generalize to k-fold matroid union:

P

g Concentration of occupancy:
Chernoff bound 1

> k] <=
Pr{|S| = k] =

Occupancy in k-fold matroid unions

Occupancy: “slots” occupied by S

Occupancy in k-fold matroid unions

Occupancy: “slots” occupied by S
with respect to specific element

Occupancy in k-fold matroid unions

Occupancy: “slots” occupied by
with respect to specific element

In 2-fold union of

N

Occupancy in k-fold matroid unions

Occupancy: “slots” occupied by S

with respect to specific element ——_
/ o
\z
In 2-fold union of U
o 0 Occupancy of w.r.t.
‘N Siot 1 Siot 2

Occupancy in k-fold matroid unions

Occupancy: “slots” occupied by S

with respect to specific element ——_
/ o
\’ =2
In 2-fold union of B U
. o Occupancy of wrt o
‘N Siot 1 Siot 2

Occupancy in k-fold matroid unions

Occupancy: “slots” occupied by S

with respect to specific element /
\z
In 2-fold union of
o 0 Occupancy of w.r.t.
‘N | Siot 1 Siot 2

Occupancy in k-fold matroid unions

Occupancy: “slots” occupied by S

with respect to specific element /
\z
In 2-fold union of
o 0 Occupancy of w.r.t.
‘N | Siot 1 Siot 2

: :)
Lemma: there exists occupancy function w; for every i:

Occupancy in k-fold matroid unions

Occupancy: “slots” occupied by S

with respect to specific element /
\z
In 2-fold union of
o 0 Occupancy of w.r.t.
‘N | Siot 1 Siot 2

: :)
Lemma: there exists occupancy function w; for every i:

1. Mapsevery S € [n] tointeger {0,1,2, ..., k}

- J

Occupancy in k-fold matroid unions

Occupancy: “slots” occupied by S

with respect to specific element
/ (o)
\’ =2
In 2-fold union of B U
. o Occupancy of wrt o
N
B

: :)
Lemma: there exists occupancy function w; for every i:

1. Mapsevery S € [n] tointeger {0,1,2, ..., k}
2. w;(5) <k = iis“compatible”with s

- J

Occupancy in k-fold matroid unions

Occupancy: “slots” occupied by S

with respect to specific element
/ (o)
\’ =2
In 2-fold union of B U
. o Occupancy of wrt o
N
B

: :) .
Lemma: there exists occupancy function w; for every i: i can be added to

1. Mapsevery S c [n] tointeger {0,1,2, k}(_// any feasible subset of 5
2. w;(5) <k = iis“compatible”with s

- J

Occupancy in k-fold matroid unions

Occupancy: “slots” occupied by
with respect to specific element

(o]
In 2-fold union of Q < =2 ‘ U :
o 0 Occupancy of w.r.t. T
o o) | Slot 1 Slot 2
=1

~

i can be added to

Lemma: there exists occupancy function w; for every i:
~— anyfeasible subset of

1. Mapsevery S € [n] tointeger {0,1,2, k}(_/
2. w;(5) <k = iis“compatible”with

\3. Monotone and 1-Lipschitz y

Occupancy in k-fold matroid unions

Occupancy: “slots” occupied by
with respect to specific element

(o)
In 2-fold union of Q = =2 ‘ U :
o 0 Occupancy of w.r.t. T
O O
N -

4 : : .
Lemma: there exists occupancy function w; for every i:

~

1. Mapsevery S € [n] tointeger {0,1,2, k}(_/
2. w;(5) <k = iis“compatible”with

o

3. Monotone and 1-Lipschitz « —)

—

Slot 1 Slot 2

i can be added to

~— anyfeasible subset of

Can be very general
No hope for Chernoff-like bounds

Algorithm for k-fold matroid unions

/3 lgnored w.p.

O0(ylogk/k)
Act[ve l Dropout Greedy —
arrives

Algorithm for k-fold matroid unions

/ \ lgnored w.p.

O0(ylogk/k)
[Feldman/Svensson/Zenklusen '16] ?
Active i Chain |
) —— Decomposition Dropout Greedy —
arrives with occupancy

Algorithm for k-fold matroid unions

X Ignored w.p.

O0(ylogk/k)
[Feldman/Svensson/Zenklusen '16] ?
Active i Chain |
) —— Decomposition Dropout Greedy [—
arrives with occupancy

Modest occupancy of S in expectation:

E[w;(5)] < k — Q(/klogk)

Algorithm for k-fold matroid unions

X Ignored w.p.

O0(ylogk/k)
[Feldman/Svensson/Zenklusen '16] ?
Active i Chain |
) —— Decomposition Dropout Greedy [—
arrives with occupancy

Modest occupancy of S in expectation:

E[w;(5)] < k — Q(/klogk)

i f "t
Bicriterion\ Concentration of occupancy of S

. 1
Concentration > Pl‘lwi(s') > E[w;(5)] + /klog k] <=

Algorithm for k-fold matroid unions

X Ignored w.p.

O0(ylogk/k)
[Feldman/Svensson/Zenklusen '16] ?
Active i Chain |
) —— Decomposition Dropout Greedy [—
arrives with occupancy

Modest occupancy of S in expectation:

E[w;(5)] < k — Q(/klogk)

Bicriterion\ Concentration of occupaqcy of S':

Concentration Pr{w;(S") = k] SE

Algorithm for k-fold matroid unions

X Ignored w.p.

O0(ylogk/k)
[Feldman/Svensson/Zenklusen '16] ?
Active i Chain |
: — Decomposition Dropout Greedy [—
arrives with occupancy ;

) (Failedw.p.1/k
Modest occupancy of S in expectation:

E[w;(5)] < k — Q(/klogk)

Bicriterion\ Concentration of occupaqcy of S':

Concentration

Algorithm for k-fold matroid unions

X Ignored w.p.

O0(ylogk/k)
[Feldman/Svensson/Zenklusen '16] ?
Active i Decocrr?;:;ition Droi)ou : Greedy Success w.p.
arriveS with occupancy l} 1-— O(V log k/k)

) (Failedw.p.1/k
Modest occupancy of S in expectation:

E[w;(5)] < k — Q(/klogk)

Bicriterion\ Concentration of occupaqcy of S':

Concentration

Conclusion

-

Theorem: Vs € [0,1],t > 0

o

Pr[f(X®)) > E[f(X)] +t] < et

J

“Chernoff-strength” bicriterion concentration

Conclusion

4 N
Theorem: Vs € [0,1],t > 0

Pr[f(X®)) > E[f(X)] +t] < et
_ /

-
Theorem: Vk, €, no (% + £)-competitive algorithm for

a graphical matroid Fy, . of
_

~

J

“Chernoff-strength” bicriterion concentration

does not suffice
for (1 — €)-prophet inequality

Conclusion

4 N
Theorem: Vs € [0,1],t > 0

Pr[f(X®) = E[f(X)] + t] < et
_ /
4)

Theorem: Vk, €, no (% + ¢)-competitive algorithm for

a graphical matroid Fy, . of
_ J

-
Theorem: Thereis (1 — O(

lo

ik))-competitive algorithm

for any k-fold matroid union F*
\

\

J

“Chernoff-strength” bicriterion concentration

does not suffice
for (1 — €)-prophet inequality

But k-fold matroid unions do

Conclusion

4 N
Theorem: Vs € [0,1],t > 0

Pr[f(X®)) > E[f(X)] +t] < et

“Chernoff-strength” bicriterion concentration

- J
4)
Theorem: Vk, &, no (% + £)-competitive algorithm for does not suffice

for (1 — €)-prophet inequality

a graphical matroid Fy, . of
_ J

4)

Theorem: Thereis (1 — O(loik))-competitive algorithm

for any k-fold matroid union F¥ T~ But k-fold matroid unions do

. N

l
Open question 1:

Improve to (1 — 0(\/%)

Conclusion

4 N
Theorem: Vs € [0,1],t > 0

Pr[f(X®)) > E[f(X)] +t] < et

“Chernoff-strength” bicriterion concentration

- J
4)
Theorem: Vk, &, no (% + £)-competitive algorithm for does not suffice

for (1 — €)-prophet inequality

a graphical matroid Fy, . of

\ J
4 I

Theorem: Thereis (1 — O(log k))-competitive algorithm

k <o But k-fold matroid unions do

for any k-fold matroid union F* \

\ A] J
/ Open question 1:
Open question 2:

1
Beyond FX? Improve to (1 — 0(\/_%)

Conclusion

4 N
Theorem: Vs € [0,1],t > 0

Pr[f(X®)) > E[f(X)] +t] < et

“Chernoff-strength” bicriterion concentration

- J
4)
Theorem: Vk, &, no (% + £)-competitive algorithm for does not suffice

for (1 — €)-prophet inequality

a graphical matroid Fy, . of
_ J

4)

Theorem: Thereis (1 — O(loik))-competitive algorithm

for any k-fold matroid union F¥ T~ But k-fold matroid unions do

\§ e \ J
/ | Thank you!

Open question 1:
Improve to (1 — 0(\/%)

Open question 2:
Beyond Fk?

	Default Section
	Slide 1: A Bicriterion Concentration Inequality and Prophet Inequalities for bold italic k-Fold Matroid Unions
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: A Bicriterion Concentration Inequality and Prophet Inequalities for bold italic k-Fold Matroid Unions
	Slide 6: Concentration inequalities
	Slide 7: Concentration inequalities
	Slide 8: Concentration inequalities
	Slide 9: Concentration inequalities
	Slide 10: Concentration inequalities
	Slide 11: Concentration inequalities
	Slide 12: Example: Chernoff bound
	Slide 13: Example: Chernoff bound
	Slide 14: Example: Chernoff bound
	Slide 15: Example: submodular functions
	Slide 16: Example: submodular functions
	Slide 17: Example: submodular functions
	Slide 18: Example: submodular functions
	Slide 19: Example: McDiarmid’s inequality
	Slide 20: Example: McDiarmid’s inequality
	Slide 21: Example: McDiarmid’s inequality
	Slide 22: Example: McDiarmid’s inequality
	Slide 23: Result 0: a bicriterion concentration
	Slide 24: Result 0: a bicriterion concentration
	Slide 25: Result 0: a bicriterion concentration
	Slide 26: Result 0: a bicriterion concentration
	Slide 27: Result 0: a bicriterion concentration
	Slide 28: Result 0: a bicriterion concentration
	Slide 29: Result 0: a bicriterion concentration
	Slide 30: A Bicriterion Concentration Inequality and Prophet Inequalities for bold italic k-Fold Matroid Unions
	Slide 31: Prophet inequalities
	Slide 32: Prophet inequalities
	Slide 33: Prophet inequalities
	Slide 34: Prophet inequalities
	Slide 35: Prophet inequalities
	Slide 36: Prophet inequalities
	Slide 37: Prophet inequalities
	Slide 38: Prophet inequalities
	Slide 39: Prophet inequalities
	Slide 40: Prophet inequalities
	Slide 41: Prophet inequalities
	Slide 42: Prophet inequalities
	Slide 43: Prophet inequalities
	Slide 44: Prophet inequalities
	Slide 45: Prophet inequalities
	Slide 46: Prophet inequalities (general feasibility)
	Slide 47: Prophet inequalities (general feasibility)
	Slide 48: Prophet inequalities (general feasibility)
	Slide 49: Prophet inequalities (general feasibility)
	Slide 50: Prophet inequalities (general feasibility)
	Slide 51: Prophet inequalities (general feasibility)
	Slide 52: Prophet inequalities (general feasibility)
	Slide 53: Prophet inequalities (general feasibility)
	Slide 54: Prophet inequalities (general feasibility)
	Slide 55: Prophet inequalities (general feasibility)
	Slide 56: Prophet inequalities (general feasibility)
	Slide 57: Prophet inequalities (general feasibility)
	Slide 58: Result 1: large girth does not suffice
	Slide 59: Result 1: large girth does not suffice
	Slide 60: Result 1: large girth does not suffice
	Slide 61: Result 1: large girth does not suffice
	Slide 62: Result 1: large girth does not suffice
	Slide 63: Result 1: large girth does not suffice
	Slide 64: Result 1: large girth does not suffice
	Slide 65: Result 1: large girth does not suffice
	Slide 66: Result 2: k-fold matroid unions suffice
	Slide 67: Result 2: k-fold matroid unions suffice
	Slide 68: Result 2: k-fold matroid unions suffice
	Slide 69: Result 2: k-fold matroid unions suffice
	Slide 70: Result 2: k-fold matroid unions suffice
	Slide 71: Result 2: k-fold matroid unions suffice
	Slide 72: Result 2: k-fold matroid unions suffice
	Slide 73: Result 2: k-fold matroid unions suffice
	Slide 74: Algorithm for bold italic k-uniform matroids
	Slide 75: Algorithm for bold italic k-uniform matroids
	Slide 76: Algorithm for bold italic k-uniform matroids
	Slide 77: Algorithm for bold italic k-uniform matroids
	Slide 78: Algorithm for bold italic k-uniform matroids
	Slide 79: Algorithm for bold italic k-uniform matroids
	Slide 80: Algorithm for bold italic k-uniform matroids
	Slide 81: Algorithm for bold italic k-uniform matroids
	Slide 82: Algorithm for bold italic k-uniform matroids
	Slide 83: Algorithm for bold italic k-uniform matroids
	Slide 84: Algorithm for bold italic k-uniform matroids
	Slide 85: Algorithm for bold italic k-uniform matroids
	Slide 86: Algorithm for bold italic k-uniform matroids
	Slide 87: Algorithm for bold italic k-uniform matroids
	Slide 88: Algorithm for bold italic k-uniform matroids
	Slide 89: Algorithm for bold italic k-uniform matroids
	Slide 90: Algorithm for bold italic k-uniform matroids
	Slide 91: Occupancy in bold italic k-fold matroid unions
	Slide 92: Occupancy in bold italic k-fold matroid unions
	Slide 93: Occupancy in bold italic k-fold matroid unions
	Slide 94: Occupancy in bold italic k-fold matroid unions
	Slide 95: Occupancy in bold italic k-fold matroid unions
	Slide 96: Occupancy in bold italic k-fold matroid unions
	Slide 97: Occupancy in bold italic k-fold matroid unions
	Slide 98: Occupancy in bold italic k-fold matroid unions
	Slide 99: Occupancy in bold italic k-fold matroid unions
	Slide 100: Occupancy in bold italic k-fold matroid unions
	Slide 101: Occupancy in bold italic k-fold matroid unions
	Slide 102: Occupancy in bold italic k-fold matroid unions
	Slide 103: Algorithm for bold italic k-fold matroid unions
	Slide 104: Algorithm for bold italic k-fold matroid unions
	Slide 105: Algorithm for bold italic k-fold matroid unions
	Slide 106: Algorithm for bold italic k-fold matroid unions
	Slide 107: Algorithm for bold italic k-fold matroid unions
	Slide 108: Algorithm for bold italic k-fold matroid unions
	Slide 109: Algorithm for bold italic k-fold matroid unions
	Slide 110: Conclusion
	Slide 111: Conclusion
	Slide 112: Conclusion
	Slide 113: Conclusion
	Slide 114: Conclusion
	Slide 115: Conclusion

