A Bicriterion Concentration Inequality and Prophet Inequalities for *k*-Fold Matroid Unions

To appear at ITCS 2025

Noga Alon, Princeton & Tel Aviv Nick Gravin, Shanghai University of Finance and Economics Tristan Pollner, Stanford Aviad Rubinstein, Stanford Hongao Wang, Purdue S. Matthew Weinberg, Princeton Qianfan Zhang, Princeton

Outline

<u>Theorem</u>: $\forall s \in [0,1], t > 0$ $\Pr[f(\mathbf{X}^{(s)}) \ge \mathbf{E}[f(\mathbf{X})] + t] \le e^{-st}$

"Chernoff-strength" *bicriterion* concentration

Outline

<u>Theorem</u>: $\forall s \in [0,1], t > 0$ $\Pr[f(\mathbf{X}^{(s)}) \ge \mathbf{E}[f(\mathbf{X})] + t] \le e^{-st}$

"Chernoff-strength" *bicriterion* concentration

<u>Theorem</u>: $\forall k, \varepsilon$, no $(\frac{1}{2} + \varepsilon)$ -competitive algorithm for a graphical matroid $\mathcal{F}_{k,\varepsilon}$ of girth k

Large girth does not suffice for $(1 - \varepsilon)$ -prophet inequality

Outline

<u>Theorem</u>: $\forall s \in [0,1], t > 0$ $\Pr[f(\mathbf{X}^{(s)}) \ge \mathbf{E}[f(\mathbf{X})] + t] \le e^{-st}$

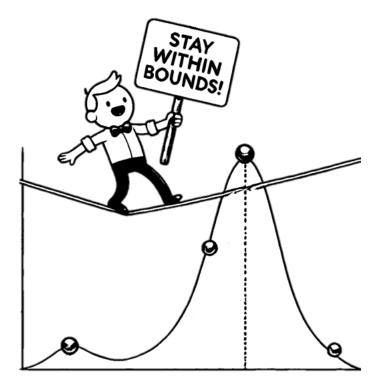
"Chernoff-strength" *bicriterion* concentration

<u>**Theorem:**</u> $\forall k, \varepsilon, \text{ no } (\frac{1}{2} + \varepsilon)$ -competitive algorithm for a graphical matroid $\mathcal{F}_{k,\varepsilon}$ of girth k

<u>**Theorem:**</u> There is $(1 - O(\sqrt{\frac{\log k}{k}}))$ -competitive algorithm for any *k*-fold matroid union \mathcal{F}^k Large girth does not suffice for $(1 - \varepsilon)$ -prophet inequality

But k-fold matroid unions do

Part I: A *Bicriterion* Concentration Inequality and Prophet Inequalities for *k*-Fold Matroid Unions



n independent Bernoulli r.v.s $X = (X_1, X_2, ..., X_n)$

n independent Bernoulli r.v.s $X = (X_1, X_2, ..., X_n)$

 $f: \{0,1\}^n \to \mathbb{R}$ that is

- Monotone
- 1-Lipschitz

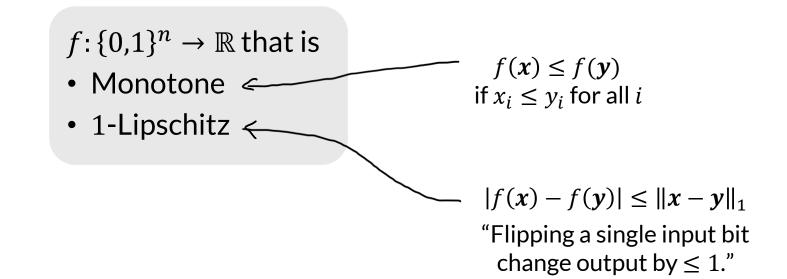
n independent Bernoulli r.v.s $X = (X_1, X_2, ..., X_n)$

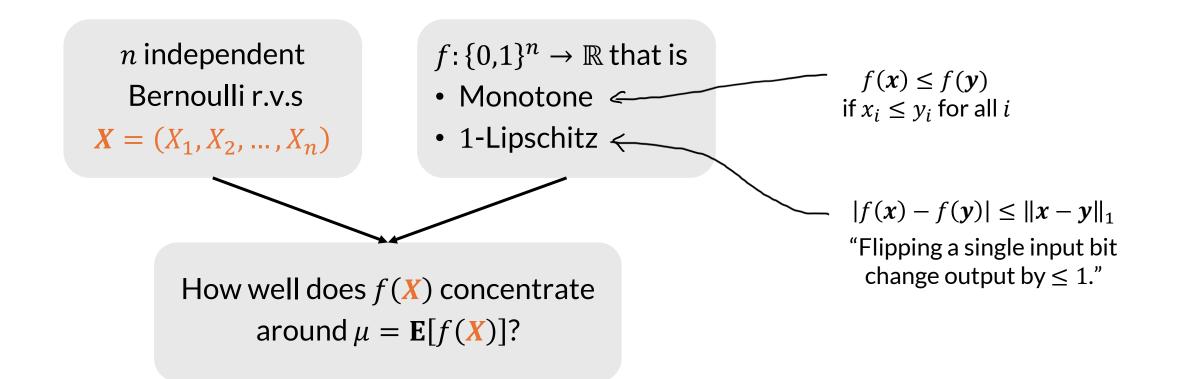
 $f: \{0,1\}^n \to \mathbb{R}$ that is

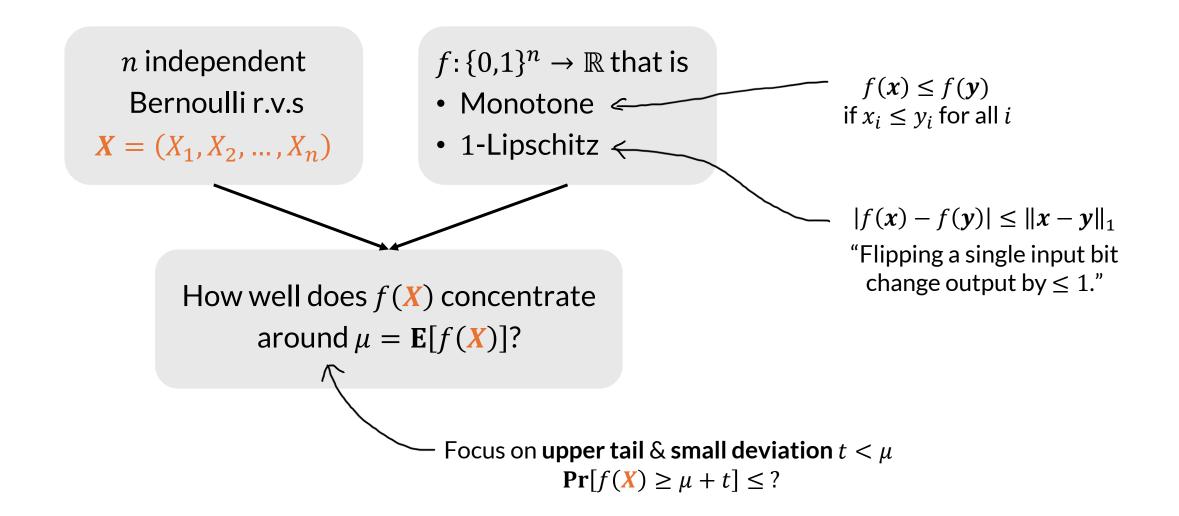
- Monotone 🦛
- 1-Lipschitz

 $f(\mathbf{x}) \le f(\mathbf{y})$ if $x_i \le y_i$ for all i

n independent Bernoulli r.v.s $X = (X_1, X_2, ..., X_n)$





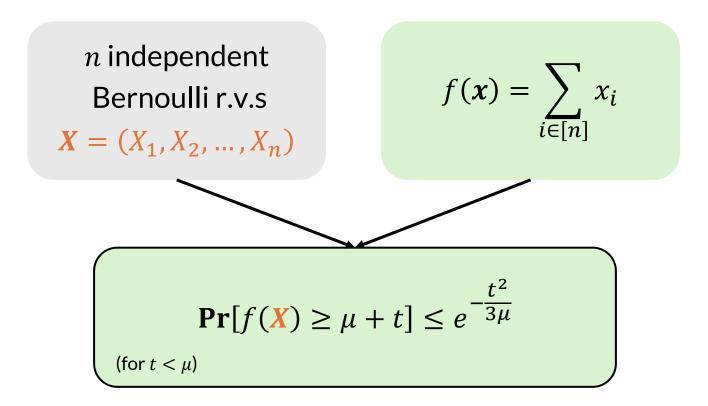


Example: Chernoff bound

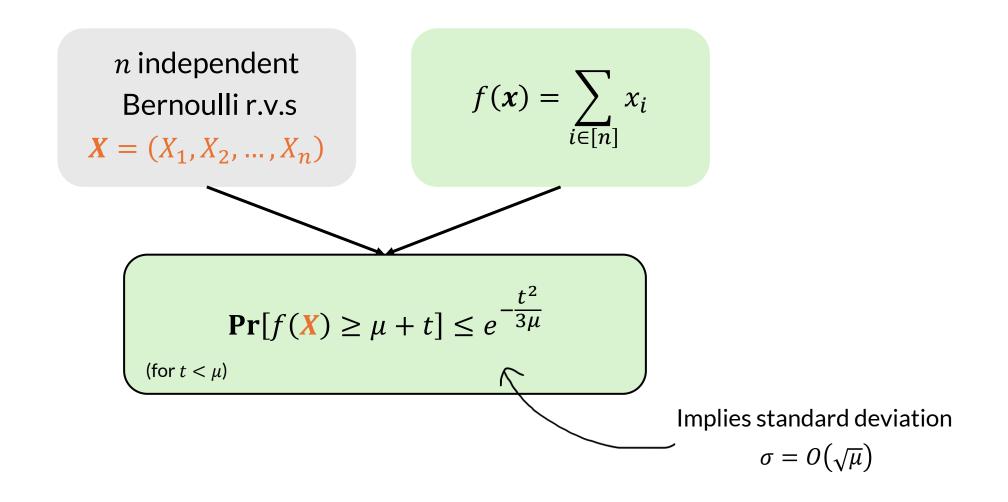
n independent Bernoulli r.v.s $X = (X_1, X_2, ..., X_n)$

 $f(\boldsymbol{x}) = \sum_{i \in [n]} x_i$

Example: Chernoff bound



Example: Chernoff bound



n independent Bernoulli r.v.s $X = (X_1, X_2, ..., X_n)$

$f: \{0,1\}^n \to \mathbb{R}$ that is

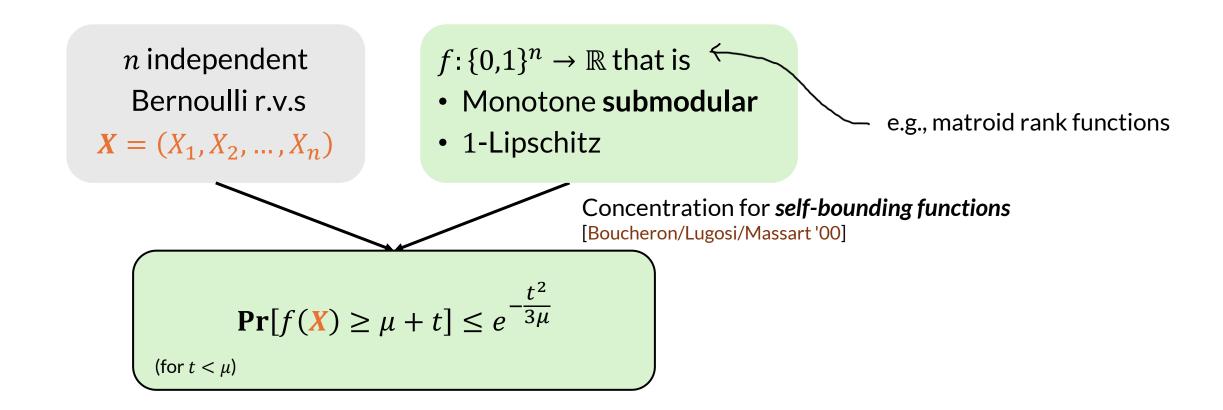
- Monotone submodular
- 1-Lipschitz

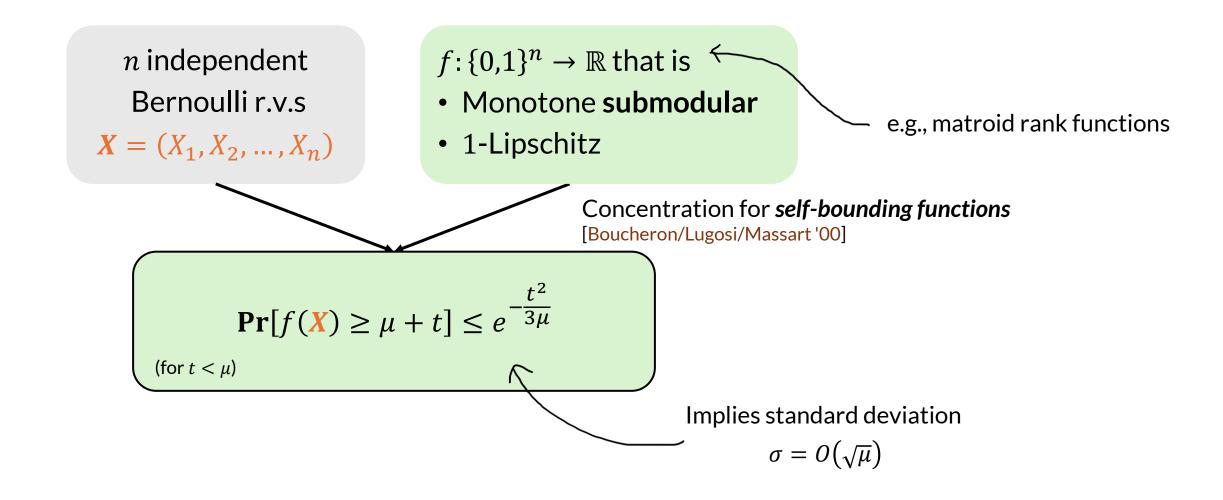
n independent Bernoulli r.v.s $X = (X_1, X_2, ..., X_n)$

$f: \{0,1\}^n \to \mathbb{R}$ that is \longleftarrow

- Monotone **submodular**
- 1-Lipschitz

- e.g., matroid rank functions

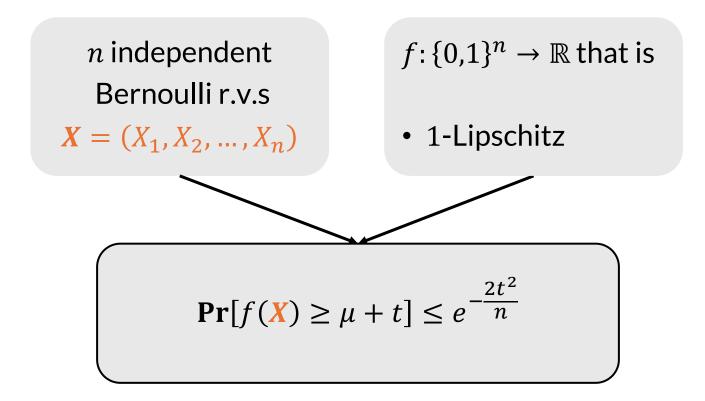


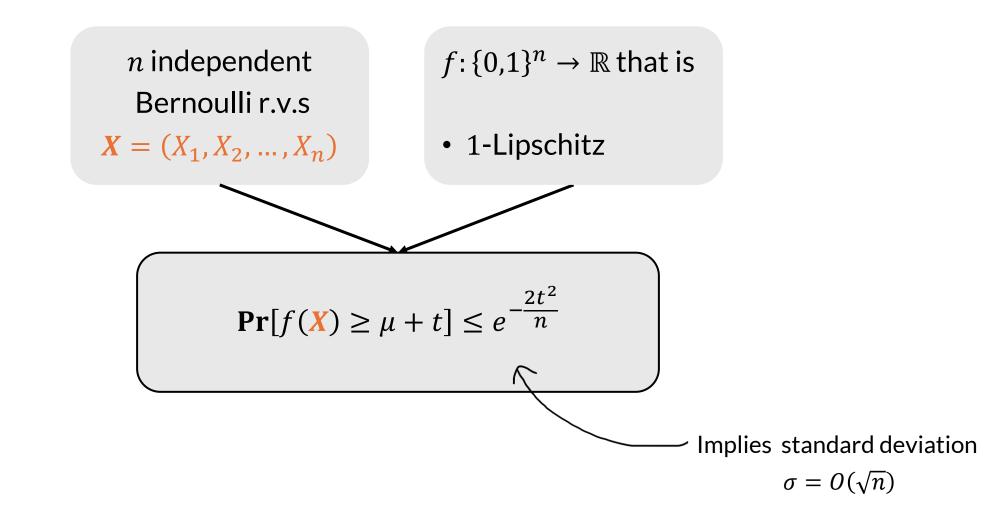


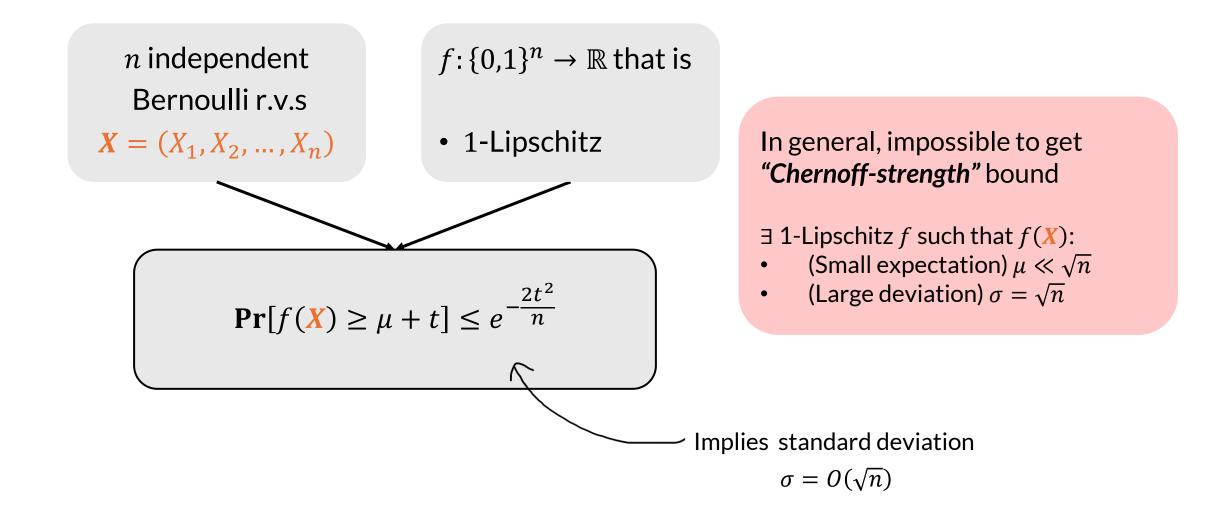
n independent Bernoulli r.v.s $X = (X_1, X_2, ..., X_n)$

 $f: \{0,1\}^n \to \mathbb{R}$ that is

• 1-Lipschitz







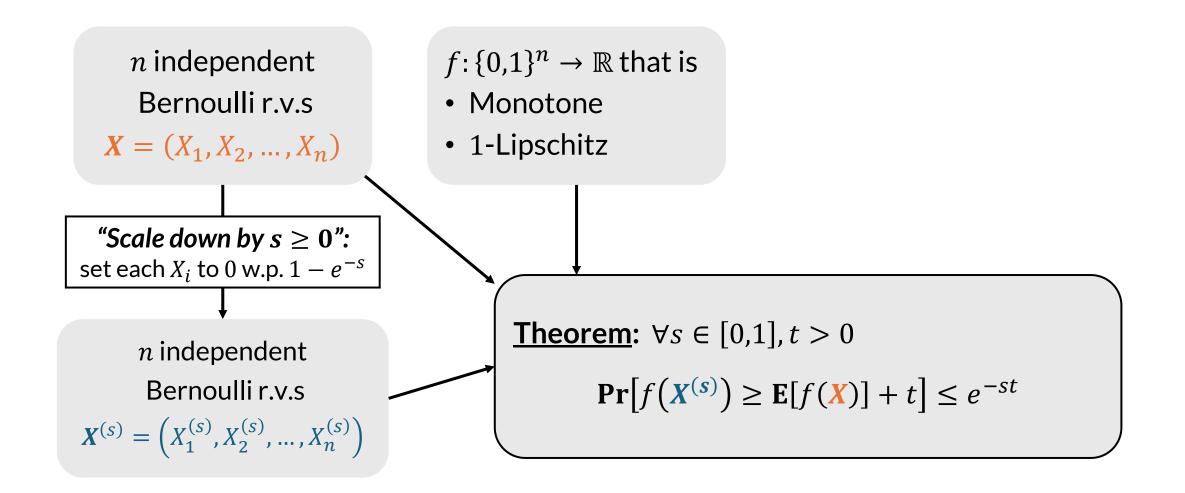
n independent Bernoulli r.v.s $X = (X_1, X_2, ..., X_n)$ $f: \{0,1\}^n \to \mathbb{R}$ that is

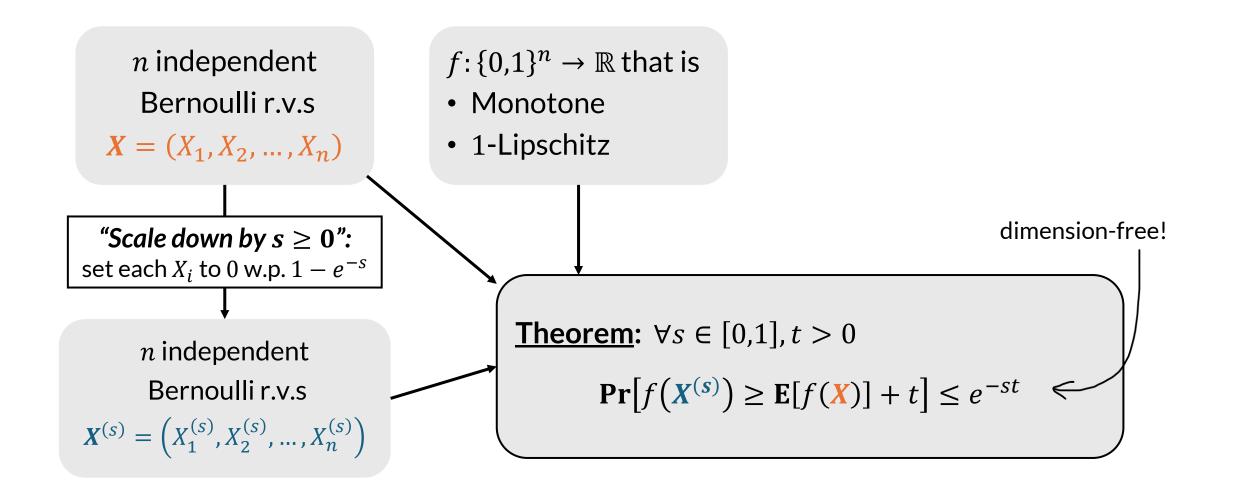
- Monotone
- 1-Lipschitz

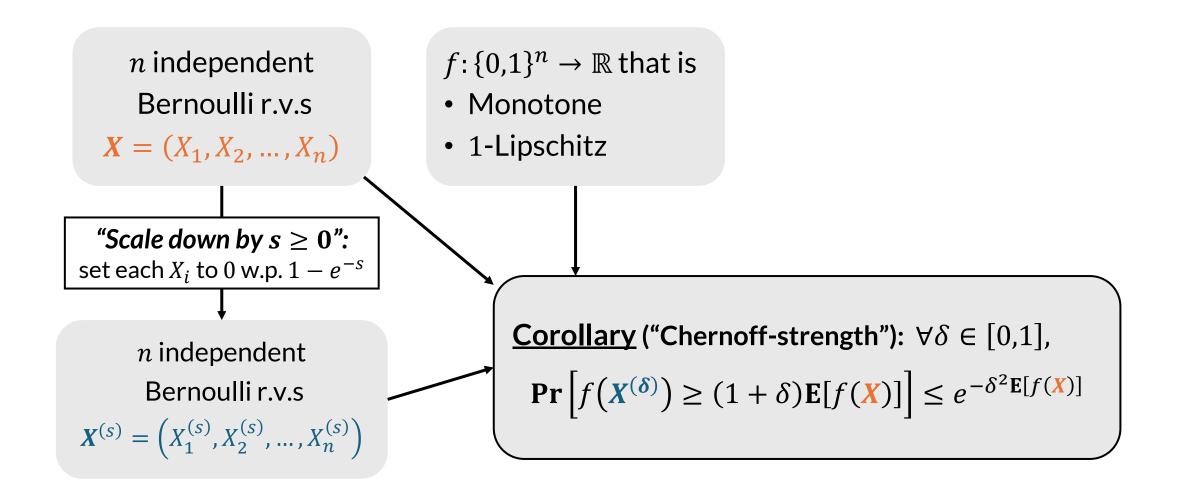
n independent Bernoulli r.v.s $\boldsymbol{X} = (X_1, X_2, \dots, X_n)$ "Scale down by $s \ge 0$ ": set each X_i to 0 w.p. $1 - e^{-s}$ *n* independent Bernoulli r.v.s $\boldsymbol{X}^{(s)} = \left(X_1^{(s)}, X_2^{(s)}, \dots, X_n^{(s)}\right)$

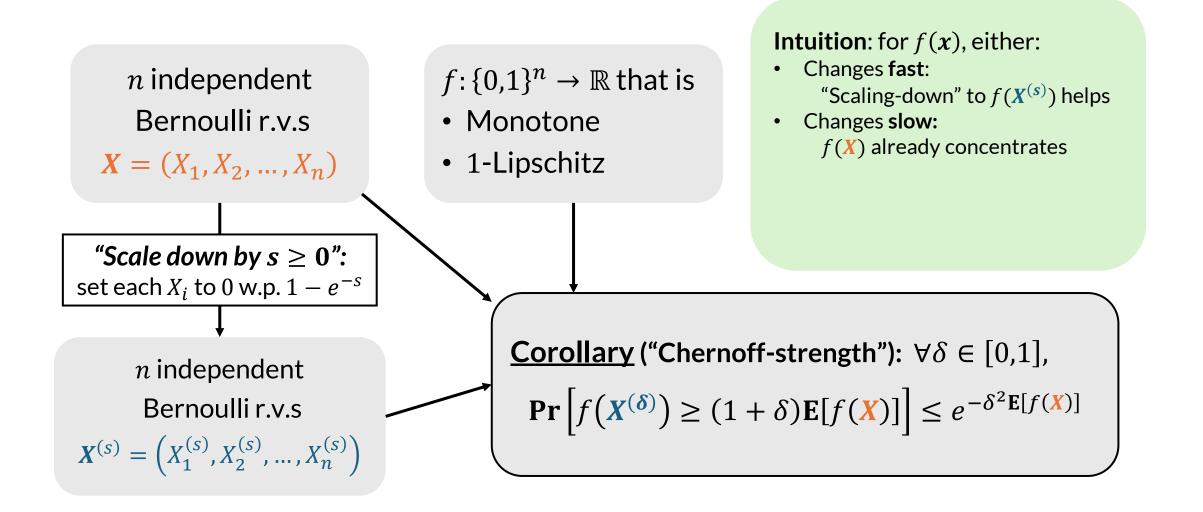
$f: \{0,1\}^n \to \mathbb{R}$ that is

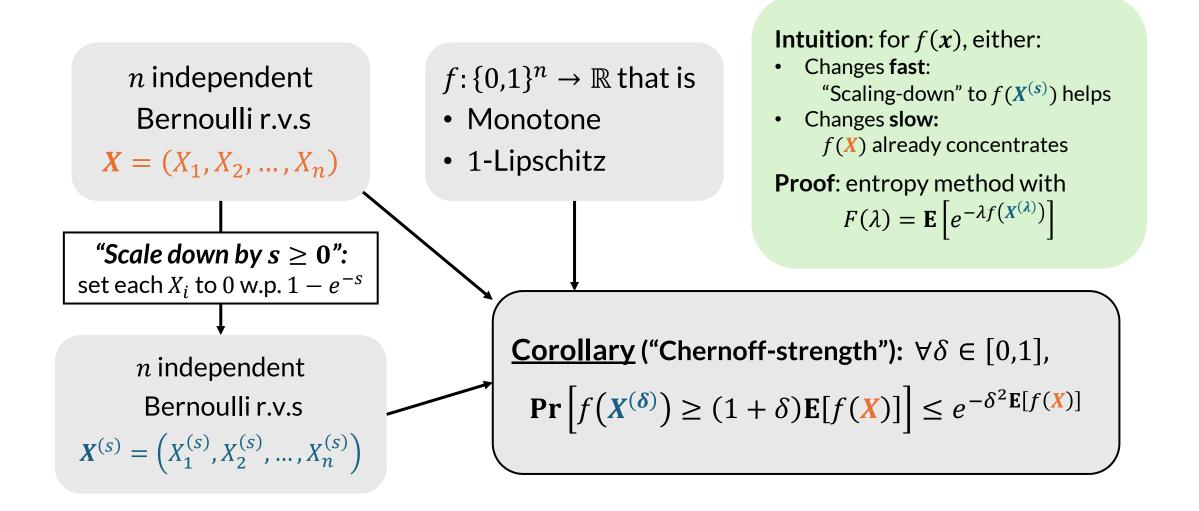
- Monotone
- 1-Lipschitz



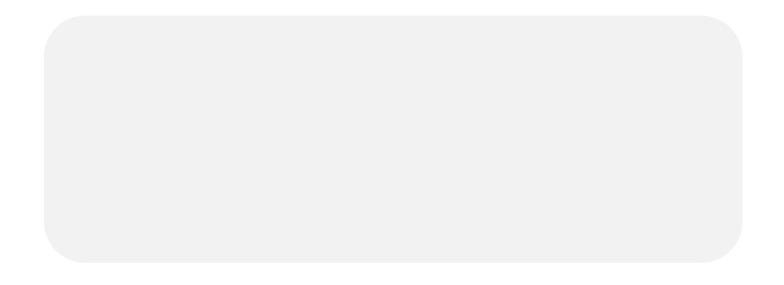






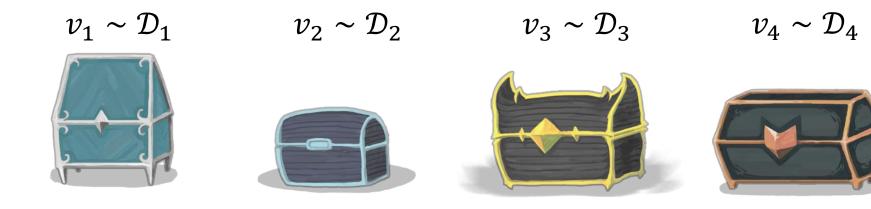


Part II: A *Bicriterion* Concentration Inequality and Prophet Inequalities for *k*-Fold Matroid Unions



Images from "Slay the Spire"

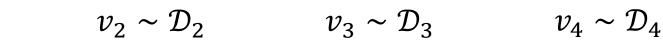
• Given *n* independent distributions $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n$



Images from "Slay the Spire"

- Given *n* independent distributions $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n$
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Accept/reject v_i immediately and irrevocably

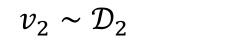
 $v_1 \sim \mathcal{D}_1$



Images from "Slay the Spire"

- Given n independent distributions $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n$
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Accept/reject v_i immediately and irrevocably ≤

— Accept at most 1 item



 $v_3 \sim \mathcal{D}_3$

 $v_4 \sim \mathcal{D}_4$

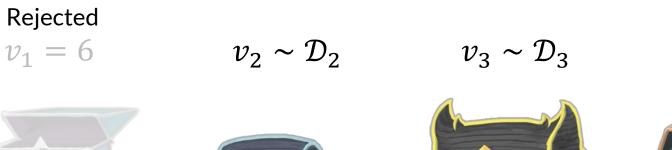
- Given n independent distributions $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n$
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Accept/reject v_i immediately and irrevocably ≤

— Accept at most 1 item

 $v_4 \sim \mathcal{D}_4$ $v_2 \sim \mathcal{D}_2$ $v_3 \sim \mathcal{D}_3$ $v_1 = 6$

- Given n independent distributions $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n$
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Accept/reject v_i immediately and irrevocably ≤

— Accept at most 1 item



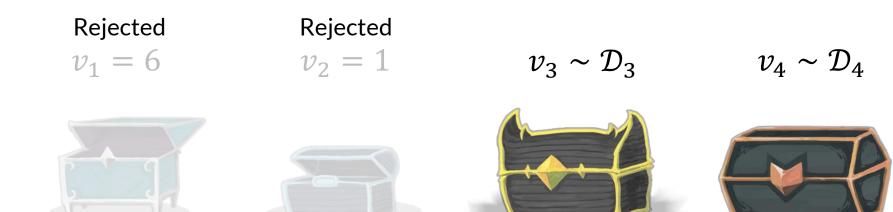
 $v_4 \sim \mathcal{D}_4$

- Given n independent distributions $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n$
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Accept/reject v_i immediately and irrevocably ≤

— Accept at most 1 item

- Given n independent distributions $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n$
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Accept/reject v_i immediately and irrevocably ≤

— Accept at most 1 item

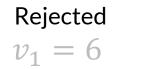


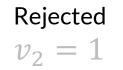
- Given n independent distributions $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n$
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Accept/reject v_i immediately and irrevocably ≤

Accept at most 1 item

Images from "Slay the Spire"

- Given n independent distributions $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n$
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Accept/reject v_i immediately and irrevocably ≤





Accepted! $v_3 = 5$

 $v_4 \sim \mathcal{D}_4$

Accept at most 1 item

- Given n independent distributions $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n$
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Accept/reject v_i immediately and irrevocably <
- Goal: maximize accepted value in expectation
 - vs. a prophet who gets $\mathbf{E}[\max_i v_i]$

RejectedRejectedAccepted! $v_1 = 6$ $v_2 = 1$ $v_3 = 5$ $v_4 \sim \mathcal{D}_4$

Images from "Slay the Spire"

Accept at most 1 item

- Given n independent distributions $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n$
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Accept/reject v_i immediately and irrevocably <
- Goal: maximize accepted value in expectation
 - vs. a prophet who gets $\mathbf{E}[\max_i v_i]$

Accept at most 1 item

Rejected	Rejected	Accepted!	Prophet's value
$v_1 = 6$	$v_2 = 1$	$v_3 = 5$	$v_4 = 8$

Images from "Slay the Spire"

- Given n independent distributions $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n$
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Accept/reject v_i immediately and irrevocably ≤
- Goal: maximize accepted value in expectation
 - vs. a prophet who gets $\mathbf{E}[\max_i v_i] \in$

$$\frac{\alpha \text{-competitive:}}{\mathbf{E}[\text{ALG}]} \geq \alpha$$

Accept at most 1 item

RejectedRejectedAccepted!Prophet's value $v_1 = 6$ $v_2 = 1$ $v_3 = 5$ $v_4 = 8$

- Given n independent distributions $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n$
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Accept/reject v_i immediately and irrevocably ≤
- Goal: maximize accepted value in expectation
 - vs. a prophet who gets $\mathbf{E}[\max_i v_i]$

$$\begin{array}{c} & -\text{Accept at most 1 item} \\ & \alpha \text{-competitive:} \\ & - \frac{\mathbf{E}[\text{ALG}]}{\mathbf{E}[\text{Prophet}]} \geq \alpha \end{array}$$

 $\frac{1}{2}$ -competitive strategy: [Krengel/Sucheston/Garling '78, Samuel-Cahn '84]

```
Accept first v_i > T = Median[\max_i v_i]
```

- Given n independent distributions $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n$
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Accept/reject v_i immediately and irrevocably
- Goal: maximize accepted value in expectation
 - vs. a prophet who gets $\mathbf{E}[\max_i v_i]$

$$\frac{\alpha}{\text{Competitive:}} \quad \frac{\alpha}{\text{E}[\text{ALG}]} \geq \alpha$$

-competitive strategy: [Krengel/Sucheston/Garling '78, Samuel-Cahn '84]

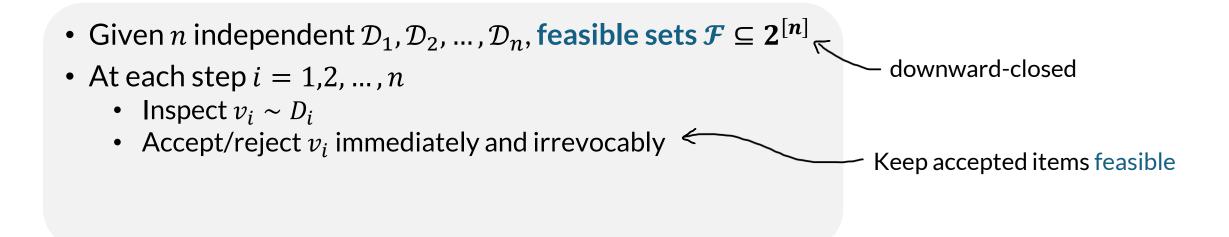
```
Accept first v_i > T = Median[\max_i v_i]
```

[.] Tight in worst case

- Given *n* independent $\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_n$, feasible sets $\mathcal{F} \subseteq \mathbf{2}^{[n]}$
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Accept/reject v_i immediately and irrevocably

- Given *n* independent $\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_n$, feasible sets $\mathcal{F} \subseteq 2^{[n]}$
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Accept/reject v_i immediately and irrevocably

 \sim downward-closed



- Given *n* independent $\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_n$, feasible sets $\mathcal{F} \subseteq 2^{[n]}$
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Accept/reject v_i immediately and irrevocably \leq
- Goal: maximize sum of accepted values in expectation
 - vs. a prophet who gets $\mathbf{E}[\max_{S \in \mathcal{F}} \sum_{i \in S} v_i]$

— downward-closed

Keep accepted items feasible

- Given *n* independent $\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_n$, feasible sets $\mathcal{F} \subseteq \mathbf{2}^{[n]}$
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Accept/reject v_i immediately and irrevocably
- Goal: maximize sum of accepted values in expectation
 - vs. a prophet who gets $\mathbf{E}[\max_{S \in \mathcal{F}} \sum_{i \in S} v_i]$

 $\frac{1}{2}$ -competitive when \mathcal{F} is *matroid* [Kleinberg/Weinberg '12]

 \sim downward-closed

- Keep accepted items feasible

- Given *n* independent $\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_n$, feasible sets $\mathcal{F} \subseteq \mathbf{2}^{[n]}$
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Accept/reject v_i immediately and irrevocably
- Goal: maximize sum of accepted values in expectation
 - vs. a prophet who gets $\mathbf{E}[\max_{S \in \mathcal{F}} \sum_{i \in S} v_i]$

 $\frac{1}{2}$ -competitive when \mathcal{F} is *matroid* [Kleinberg/Weinberg '12]

$$(1 - O(\frac{1}{\sqrt{k}}))$$
-competitive
when \mathcal{F} is *k*-uniform matroid
[Alaei '14]

— downward-closed

- Keep accepted items feasible

- Given *n* independent $\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_n$, feasible sets $\mathcal{F} \subseteq \mathbf{2}^{[n]}$,
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Accept/reject v_i immediately and irrevocably \leq
- Goal: maximize sum of accepted values in expectation
 - vs. a prophet who gets $\mathbf{E}[\max_{S \in \mathcal{F}} \sum_{i \in S} v_i]$

 \frown downward-closed

- Keep accepted items feasible

$$\frac{1}{2}$$
-competitive
when \mathcal{F} is *matroid*
[Kleinberg/Weinberg '12]

$$(1 - O(\frac{1}{\sqrt{k}}))$$
-competitive
when \mathcal{F} is *k*-uniform matroid
[Alaei '14]

 $\mathcal{F} = \{S: |S| \le k\}$ "Accept $\le k$ items"

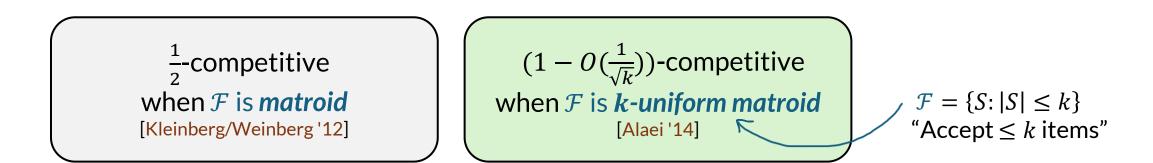
- Given *n* independent $\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_n$, feasible sets $\mathcal{F} \subseteq 2^{[n]}$,
- At each step i = 1, 2, ..., n
 - Inspect $v_i \sim D_i$
 - Accept/reject v_i immediately and irrevocably \leq
- Goal: maximize sum of accepted values in expectation
 - vs. a prophet who gets $\mathbf{E}[\max_{S \in \mathcal{F}} \sum_{i \in S} v_i]$

 \sim downward-closed

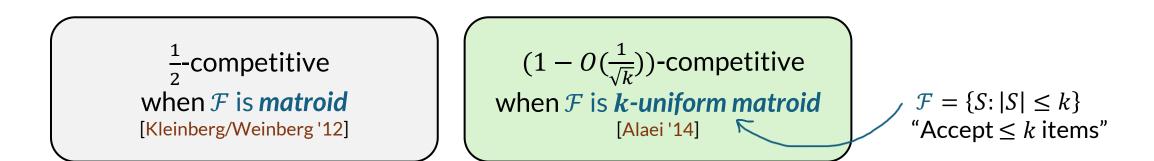
- Keep accepted items feasible

$$\frac{\frac{1}{2}\text{-competitive}}{\text{when }\mathcal{F} \text{ is matroid}}_{[\text{Kleinberg/Weinberg '12]}} \left(\begin{array}{c} (1 - O(\frac{1}{\sqrt{k}}))\text{-competitive}\\ \text{when }\mathcal{F} \text{ is }k\text{-uniform matroid}\\ [\text{Alaei '14}] \end{array} \right) \mathcal{F} = \{S: |S| \le k\}$$
"Accept $\le k$ items"

What conditions on \mathcal{F} suffice for $(1 - \varepsilon)$ -competitive prophet inequality?

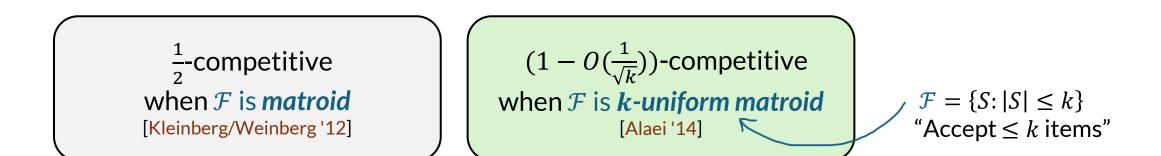


What conditions on \mathcal{F} suffice for $(1 - \varepsilon)$ -competitive prophet inequality?



What conditions on \mathcal{F} suffice for $(1 - \varepsilon)$ -competitive prophet inequality?

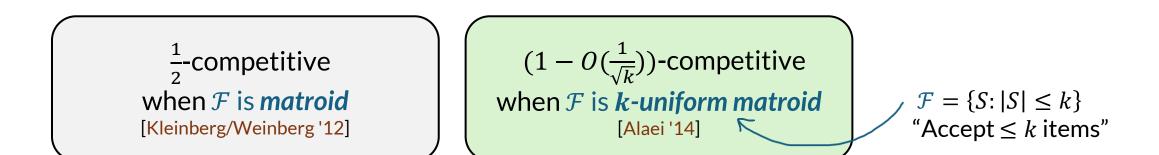
What makes *k*-uniform matroid easy?



What conditions on \mathcal{F} suffice for $(1 - \varepsilon)$ -competitive prophet inequality?

What makes *k*-uniform matroid easy?

• Because of a large girth?



What conditions on \mathcal{F} suffice for $(1 - \varepsilon)$ -competitive prophet inequality?

What makes *k*-uniform matroid easy?

- Because of a large girth?
- Because it is a **union of many matroids**?

Girth(\mathcal{F}): minimum size of infeasible set

Girth(\mathcal{F}): minimum size of infeasible set

• k-uniform matroids: k + 1

Girth(\mathcal{F}): minimum size of infeasible set

- k-uniform matroids: k + 1
- Graphical matroids: length of shortest cycle

Girth(\mathcal{F}): minimum size of infeasible set

- k-uniform matroids: k + 1
- Graphical matroids: length of shortest cycle

Given undirected graph G,

- elements = {edges}
- feasible sets = {forests}

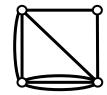
Girth(\mathcal{F}): minimum size of infeasible set

- k-uniform matroids: k + 1
- Graphical matroids: length of shortest cycle

Given undirected graph G,

- elements = {edges}
- feasible sets = {forests}

e.g.: graphical matroid of



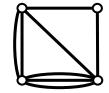
Girth(\mathcal{F}): minimum size of infeasible set

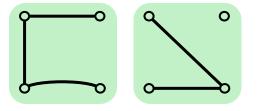
- k-uniform matroids: k + 1
- Graphical matroids: length of shortest cycle

Given undirected graph G,

- elements = {edges}
- feasible sets = {forests}

e.g.: graphical matroid of





Feasible

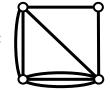
Girth(\mathcal{F}): minimum size of infeasible set

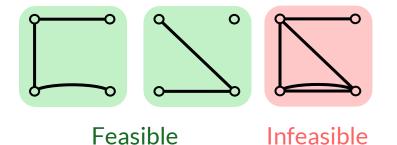
- k-uniform matroids: k + 1
- Graphical matroids: length of shortest cycle

Given undirected graph G,

- elements = {edges}
- feasible sets = {forests}

e.g.: graphical matroid of





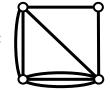
Girth(\mathcal{F}): minimum size of infeasible set

- k-uniform matroids: k + 1
- Graphical matroids: length of shortest cycle

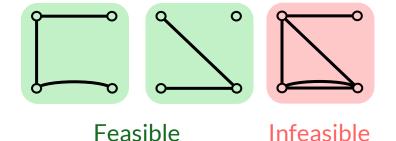
Given undirected graph G,

- elements = {edges}
- feasible sets = {forests}

e.g.: graphical matroid of



<u>**Theorem:**</u> $\forall k, \varepsilon$, no $(\frac{1}{2} + \varepsilon)$ -competitive algorithm for a graphical matroid $\mathcal{F}_{k,\varepsilon}$ of girth k



k-fold union of matroid \mathcal{F} : Feasible $S \in \mathcal{F}^k \Leftrightarrow$ partitioned into *k* feasible sets $\in \mathcal{F}$ $\mathcal{F}^k = \{S_1 \cup S_2 \cup \cdots \cup S_k \mid S_1, S_2, \dots, S_k \in \mathcal{F}\}$

k-fold union of matroid \mathcal{F} : Feasible $S \in \mathcal{F}^k \Leftrightarrow$ partitioned into k feasible sets $\in \mathcal{F}$ $\mathcal{F}^k = \{S_1 \cup S_2 \cup \cdots \cup S_k \mid S_1, S_2, \dots, S_k \in \mathcal{F}\}$

• *k*-fold union of 1-uniform matroid: *k*-uniform matroid

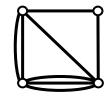
k-fold union of matroid \mathcal{F} : Feasible $S \in \mathcal{F}^k \Leftrightarrow$ partitioned into k feasible sets $\in \mathcal{F}$ $\mathcal{F}^k = \{S_1 \cup S_2 \cup \cdots \cup S_k \mid S_1, S_2, \dots, S_k \in \mathcal{F}\}$

- *k*-fold union of 1-uniform matroid: *k*-uniform matroid
- *k*-fold union of graphical matroids?

k-fold union of matroid \mathcal{F} : Feasible $S \in \mathcal{F}^k \Leftrightarrow$ partitioned into k feasible sets $\in \mathcal{F}$ $\mathcal{F}^k = \{S_1 \cup S_2 \cup \cdots \cup S_k \mid S_1, S_2, \dots, S_k \in \mathcal{F}\}$

- *k*-fold union of 1-uniform matroid: *k*-uniform matroid
- k-fold union of graphical matroids?

e.g.: 2-fold union of graphical matroid



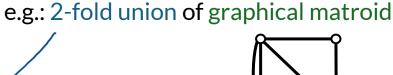
k-fold union of matroid \mathcal{F} : Feasible $S \in \mathcal{F}^k \iff$ partitioned into *k* feasible sets $\in \mathcal{F}$ $\mathcal{F}^k = \{S_1 \cup S_2 \cup \cdots \cup S_k \mid S_1, S_2, \dots, S_k \in \mathcal{F}\}$

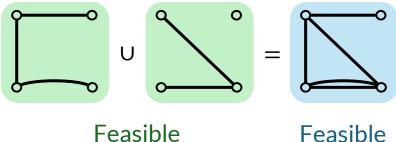
- *k*-fold union of 1-uniform matroid: *k*-uniform matroid
- k-fold union of graphical matroids?

Feasible

k-fold union of matroid \mathcal{F} : Feasible $S \in \mathcal{F}^k \iff$ partitioned into k feasible sets $\in \mathcal{F}$ $\mathcal{F}^k = \{S_1 \cup S_2 \cup \cdots \cup S_k \mid S_1, S_2, \dots, S_k \in \mathcal{F}\}$

- k-fold union of 1-uniform matroid: k-uniform matroid
- k-fold union of graphical matroids?

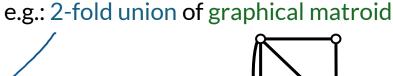


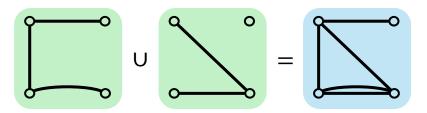


Feasible

k-fold union of matroid \mathcal{F} : Feasible $S \in \mathcal{F}^k \iff$ partitioned into *k* feasible sets $\in \mathcal{F}$ $\mathcal{F}^k = \{S_1 \cup S_2 \cup \cdots \cup S_k \mid S_1, S_2, \dots, S_k \in \mathcal{F}\}$

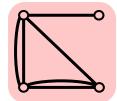
- *k*-fold union of 1-uniform matroid: *k*-uniform matroid
- k-fold union of graphical matroids?





Feasible

Feasible



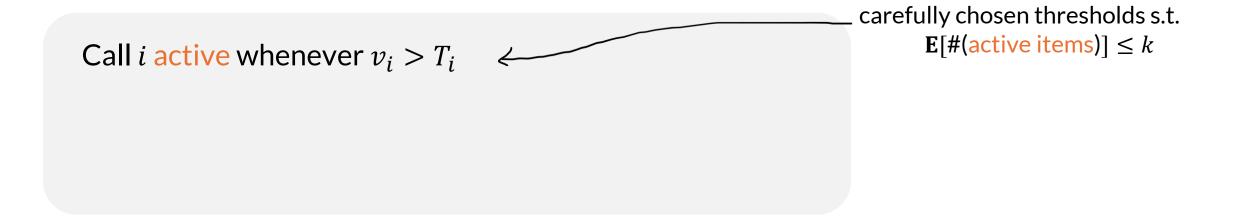
Infeasible

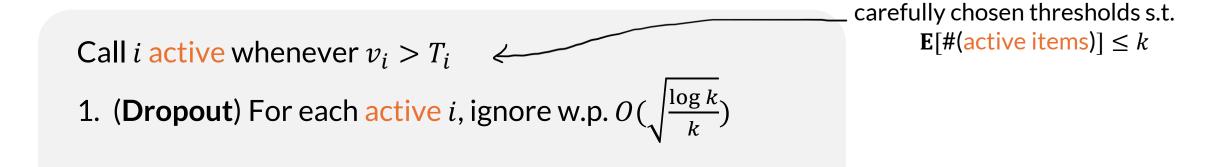
Result 2: k-fold matroid unions suffice

k-fold union of matroid \mathcal{F} : e.g.: 2-fold union of graphical matroid Feasible $S \in \mathcal{F}^k \iff$ partitioned into k feasible sets $\in \mathcal{F}$ $\mathcal{F}^k = \{S_1 \cup S_2 \cup \cdots \cup S_k \mid S_1, S_2, \dots, S_k \in \mathcal{F}\}$ • k-fold union of 1-uniform matroid: k-uniform matroid k-fold union of graphical matroids? U =Feasible Feasible <u>**Theorem:**</u> There is $(1 - O(\sqrt{\frac{\log k}{k}}))$ -competitive algorithm for any k-fold matroid union \mathcal{F}^k

Infeasible

Call *i* active whenever $v_i > T_i$





Call *i* active whenever $v_i > T_i$

1. (**Dropout**) For each active *i*, ignore w.p. $O(\sqrt{\frac{\log k}{k}})$

2. (Greedy) Otherwise, accept whenever possible

carefully chosen thresholds s.t. $\mathbf{E}[\#(\text{active items})] \leq k$

Call *i* active whenever $v_i > T_i$

1. (**Dropout**) For each active *i*, ignore w.p. $O(\sqrt{\frac{\log k}{k}})$

2. (Greedy) Otherwise, accept whenever possible

carefully chosen thresholds s.t.

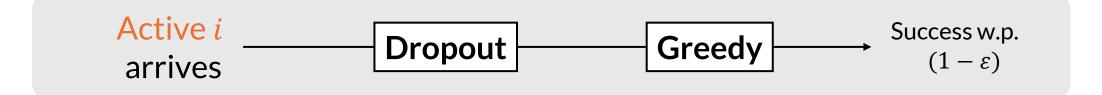
 $\mathbf{E}[\#(\text{active items})] \le k$

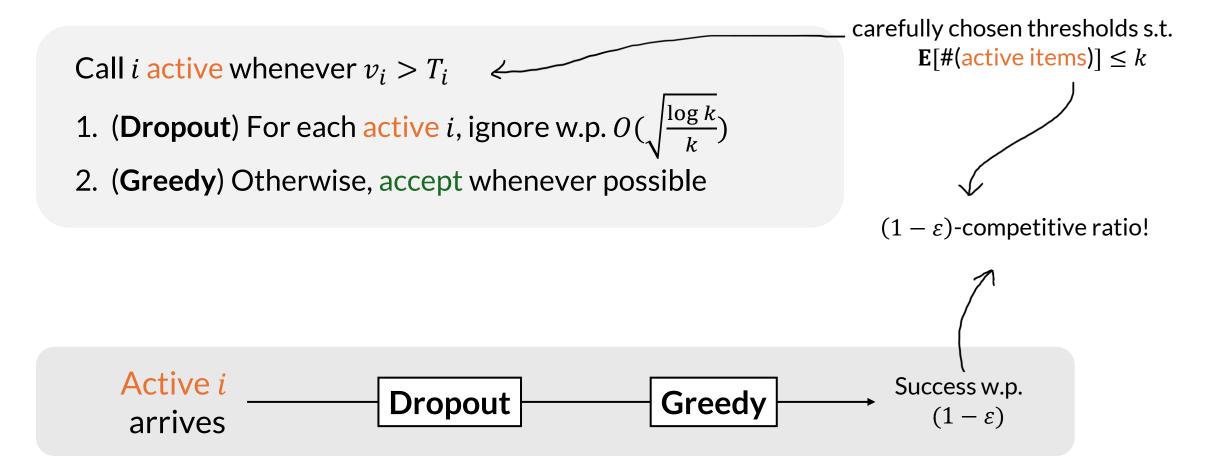
Call *i* active whenever $v_i > T_i$ ϵ

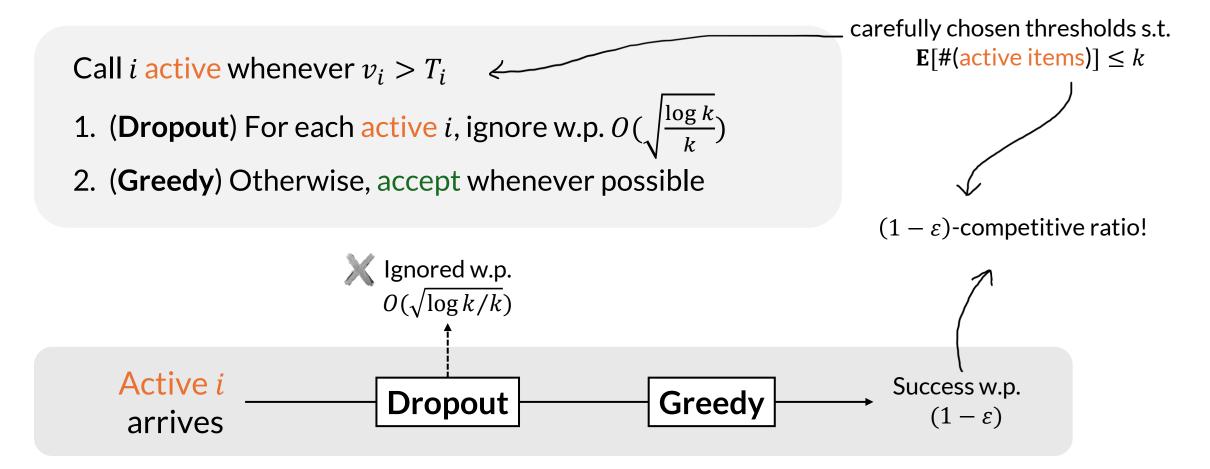
1. (**Dropout**) For each active *i*, ignore w.p. $O(\sqrt{\frac{\log k}{k}})$

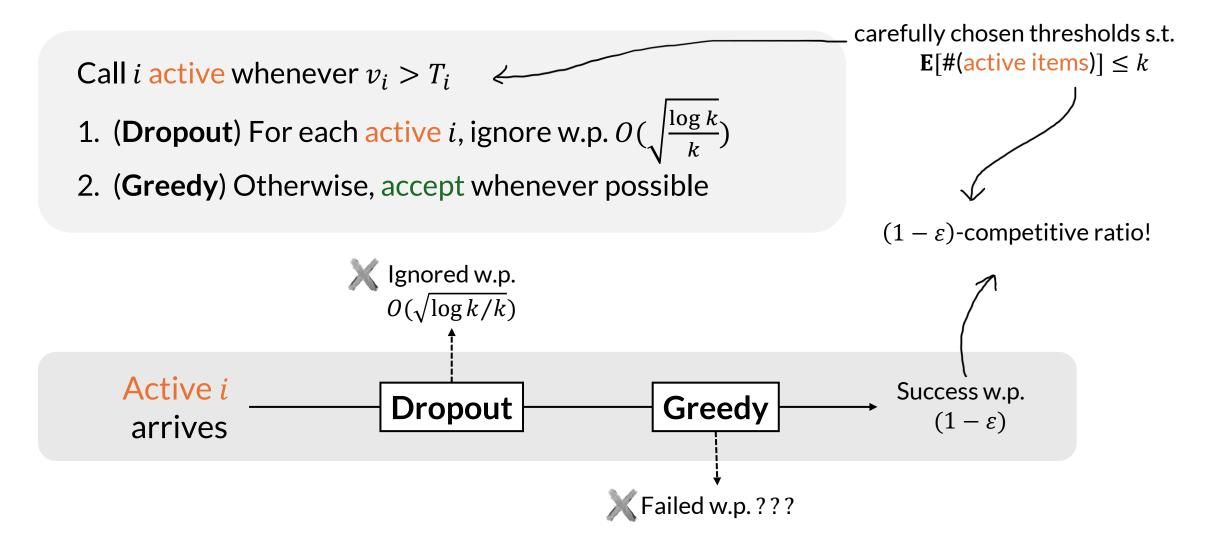
2. (Greedy) Otherwise, accept whenever possible

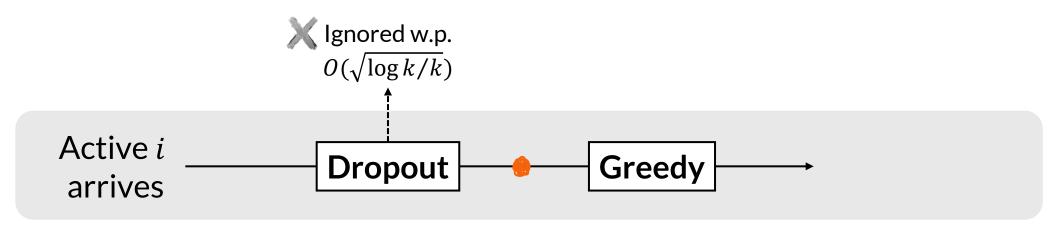
carefully chosen thresholds s.t. $\mathbf{E}[\#(\text{active items})] \le k$



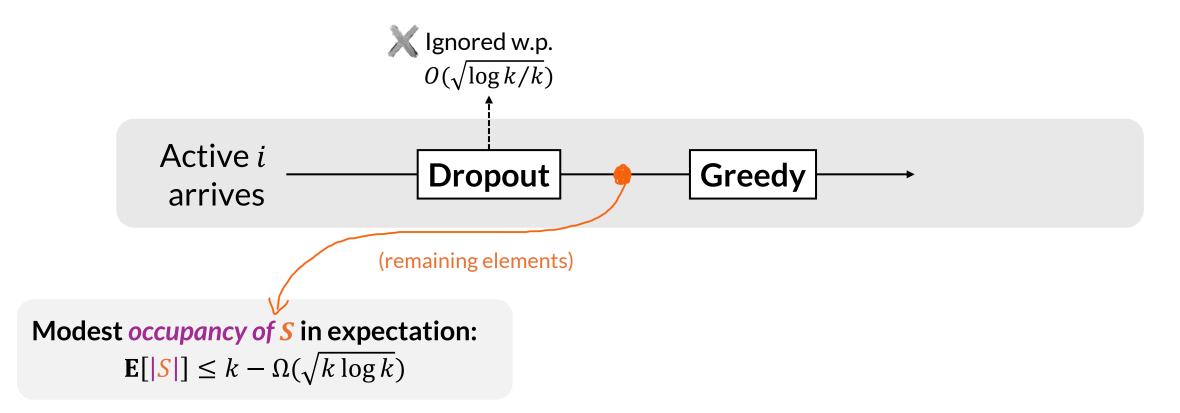


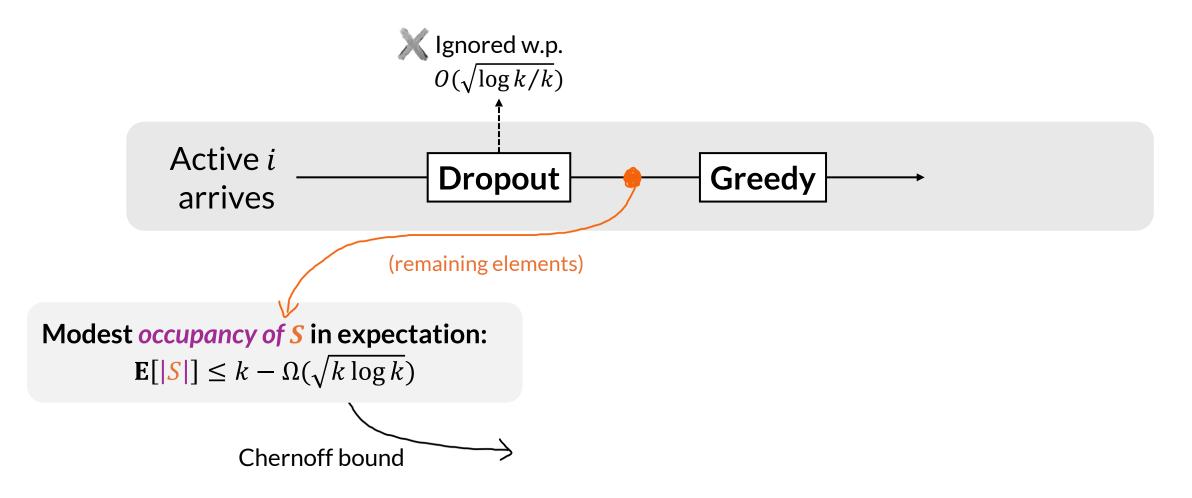


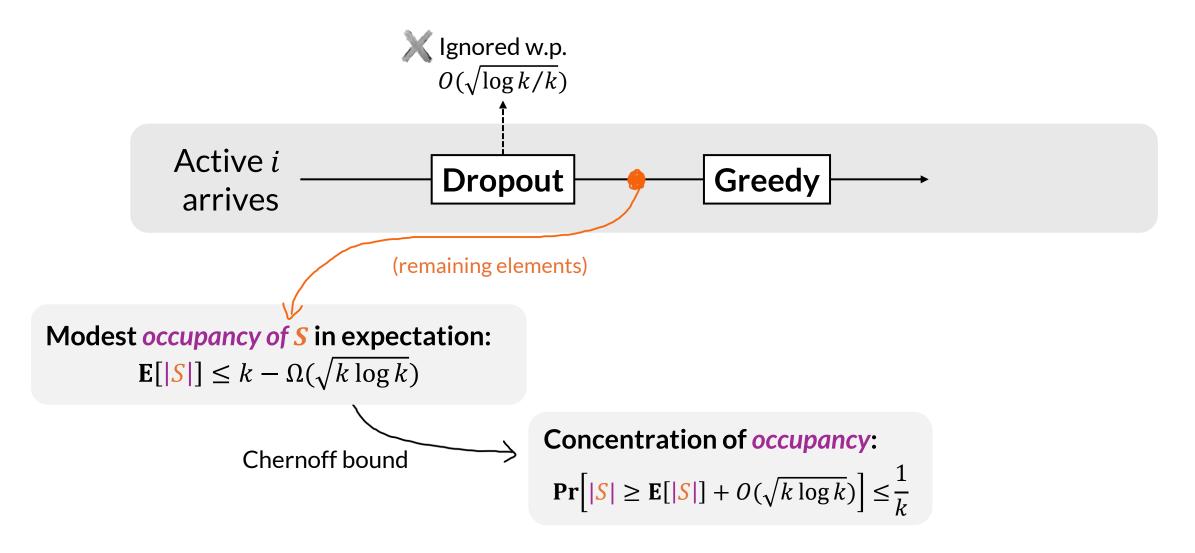


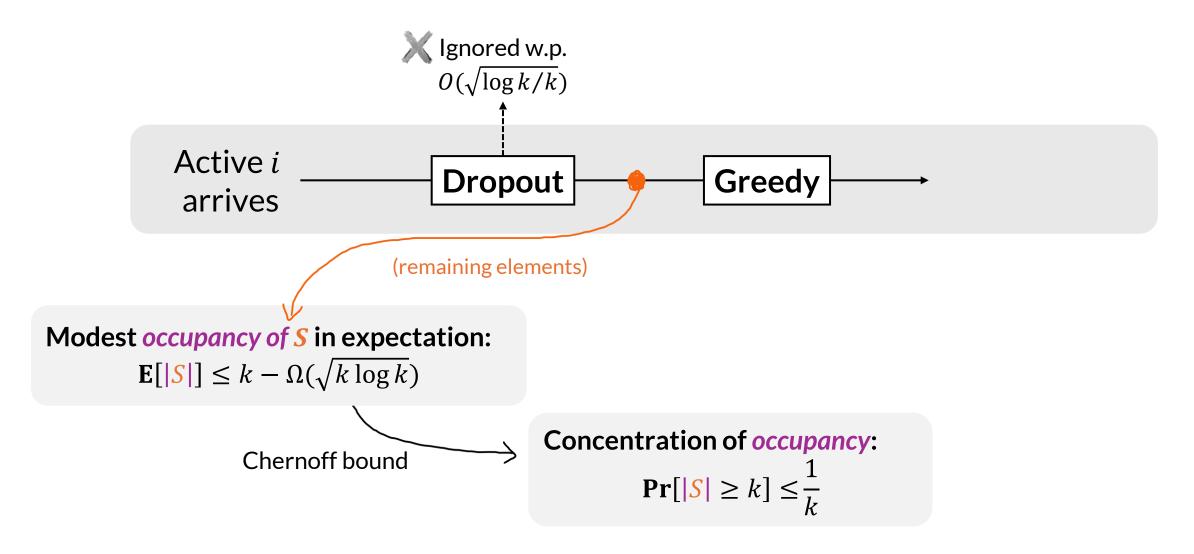


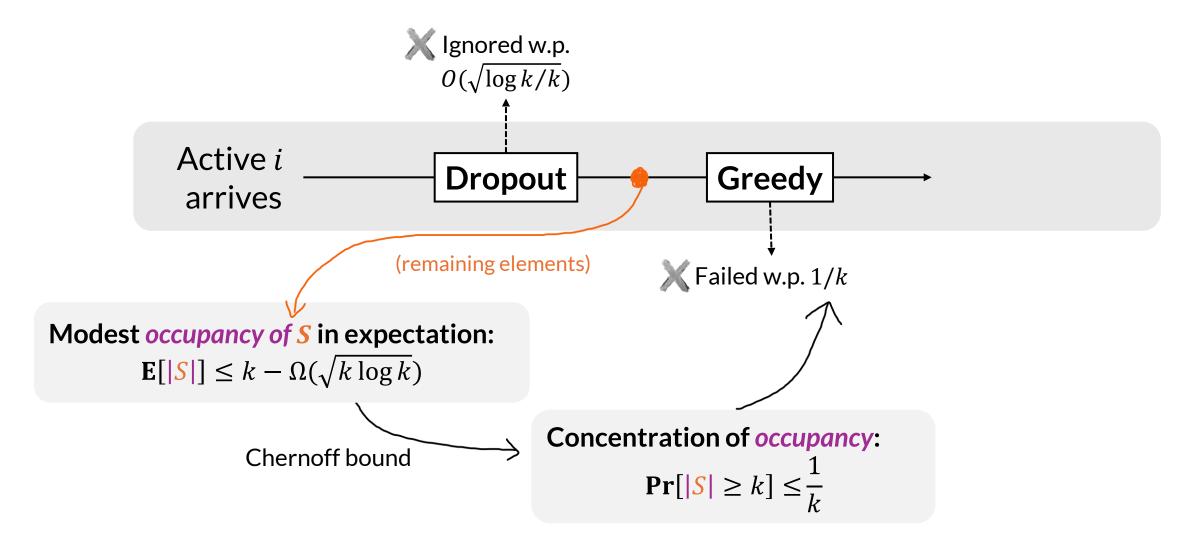
(remaining elements)

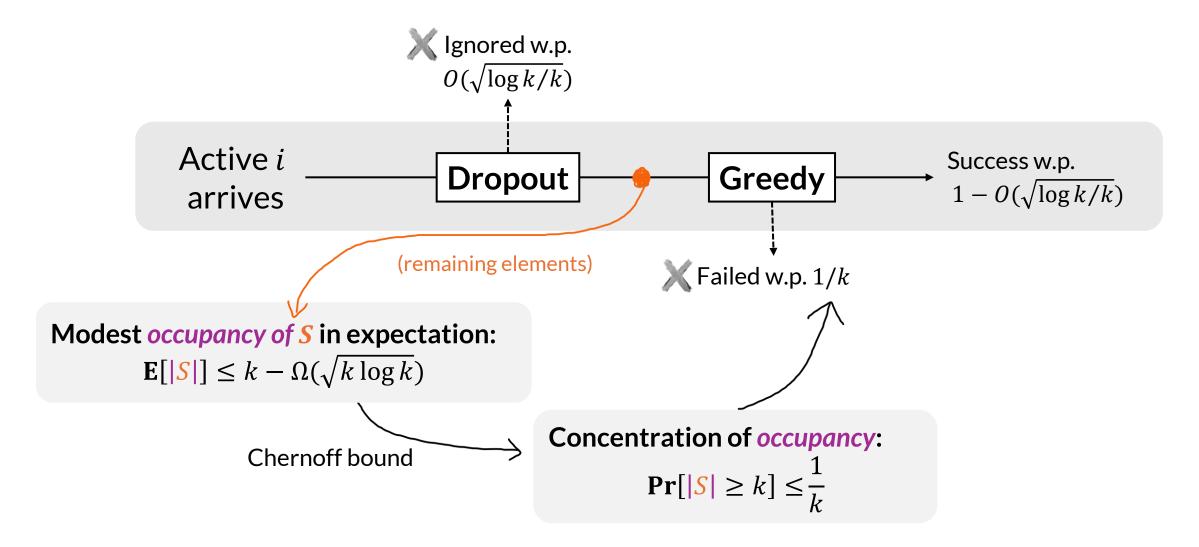


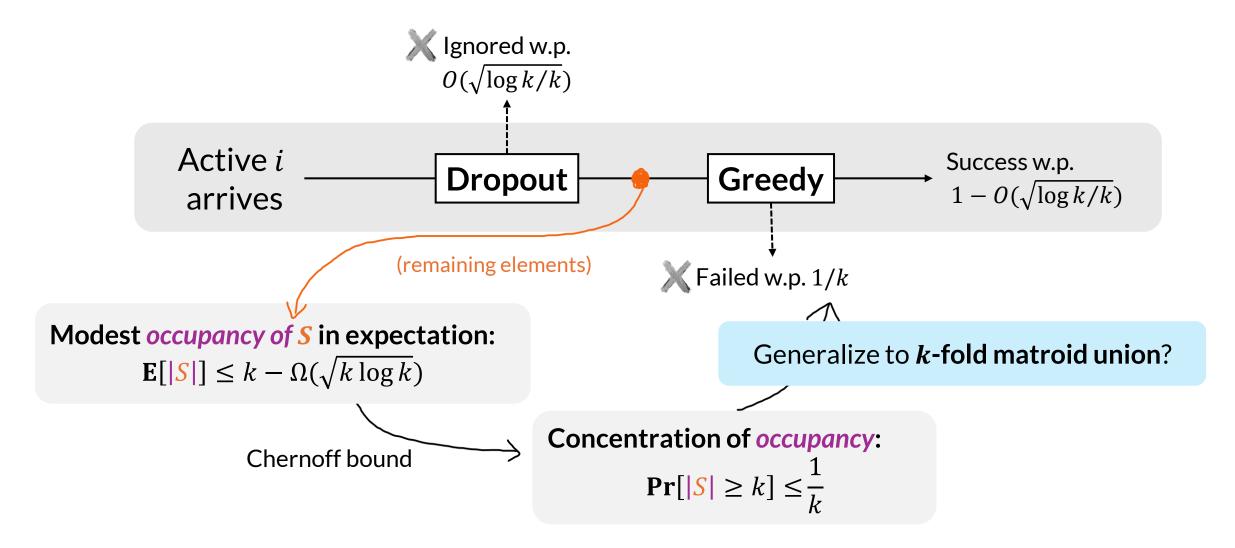










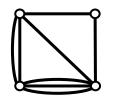


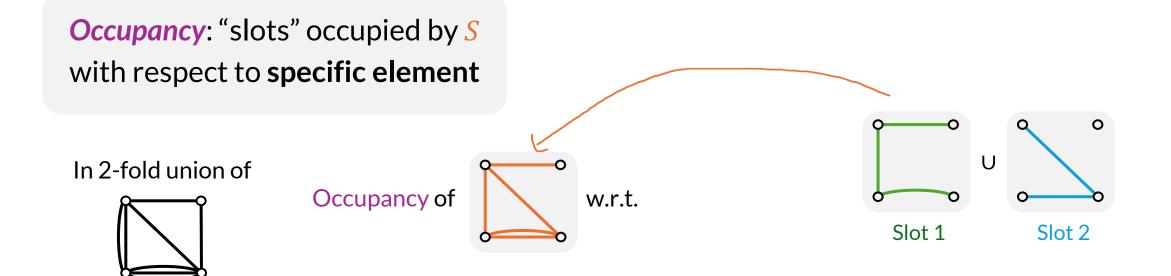
Occupancy: "slots" occupied by **S**

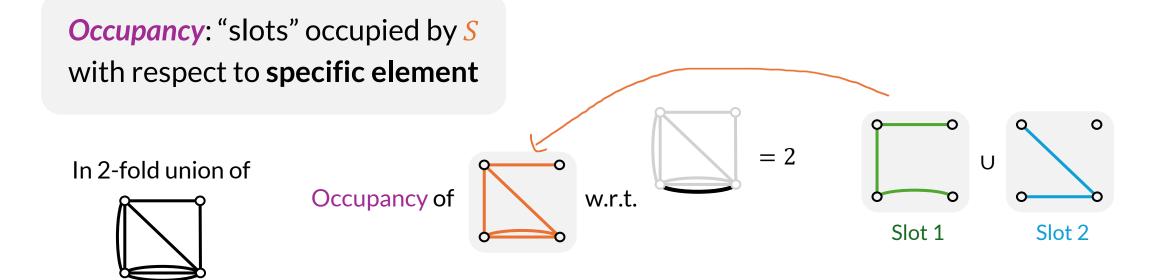
Occupancy: "slots" occupied by *S* with respect to **specific element**

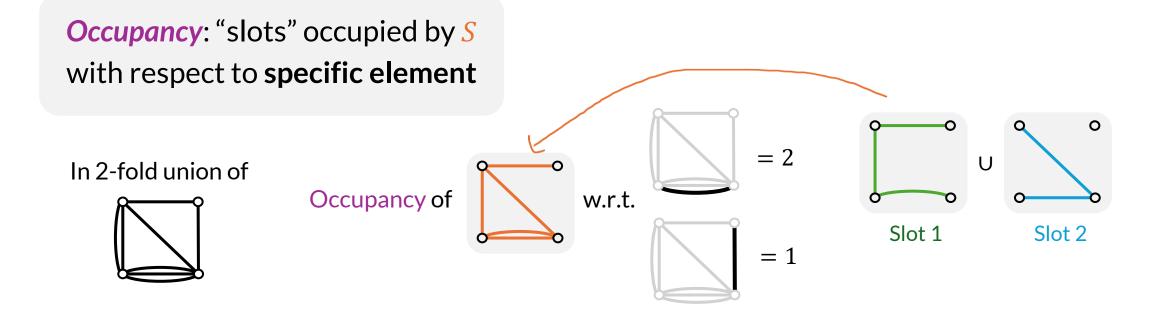
Occupancy: "slots" occupied by *S* with respect to **specific element**

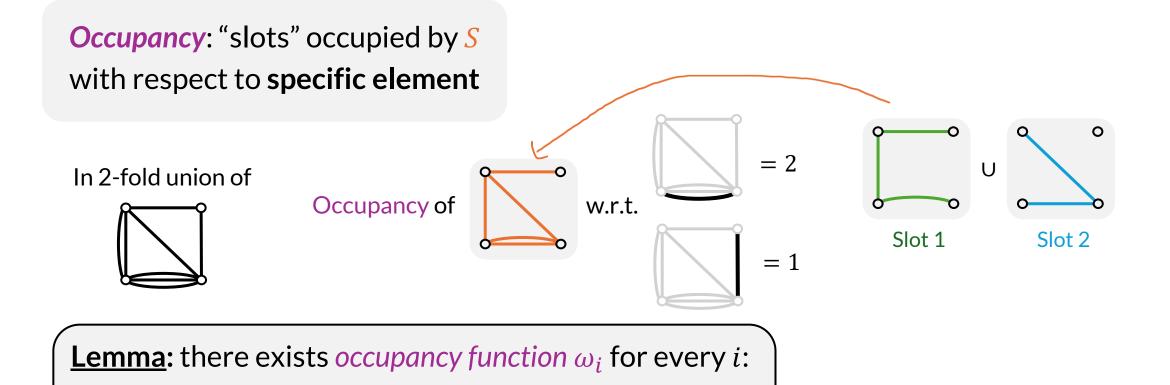
In 2-fold union of

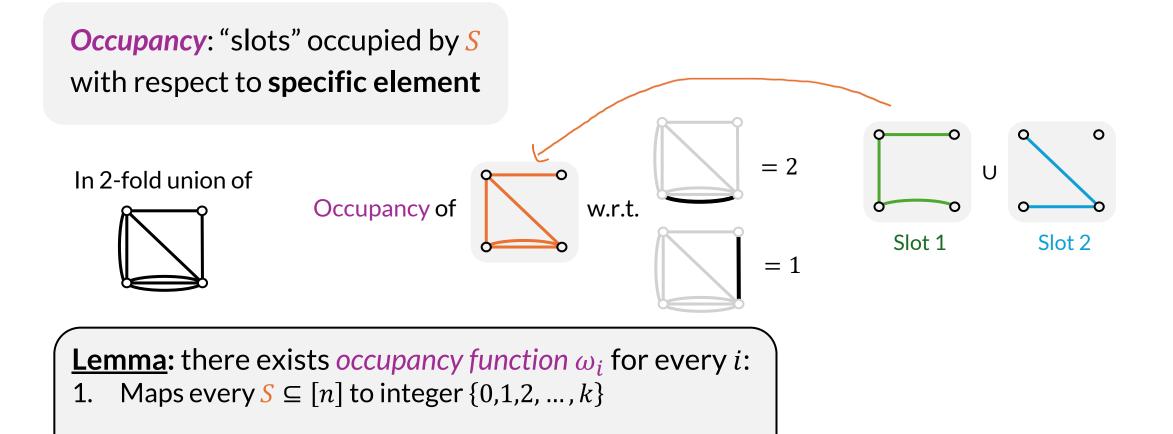


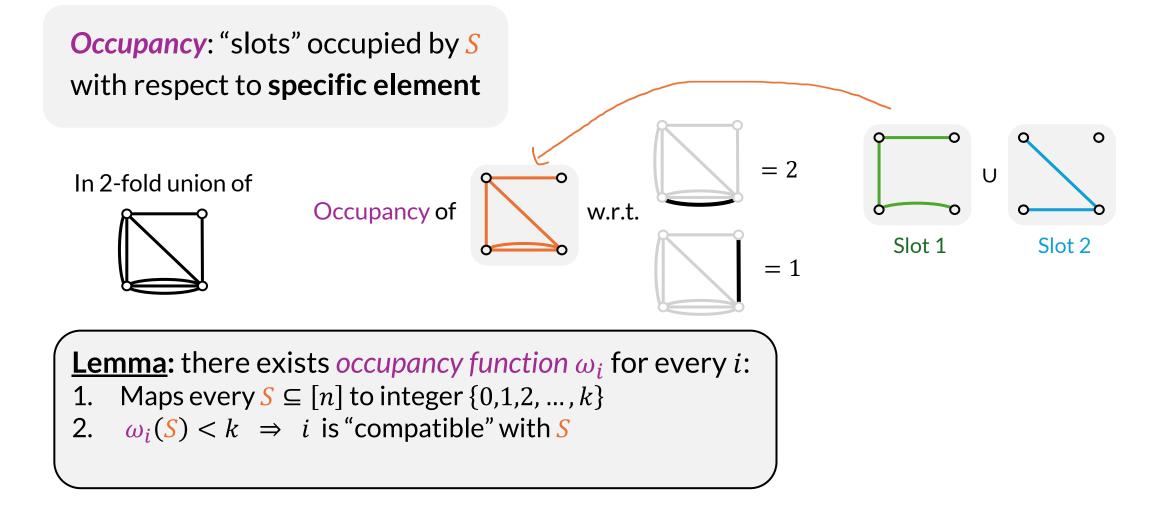


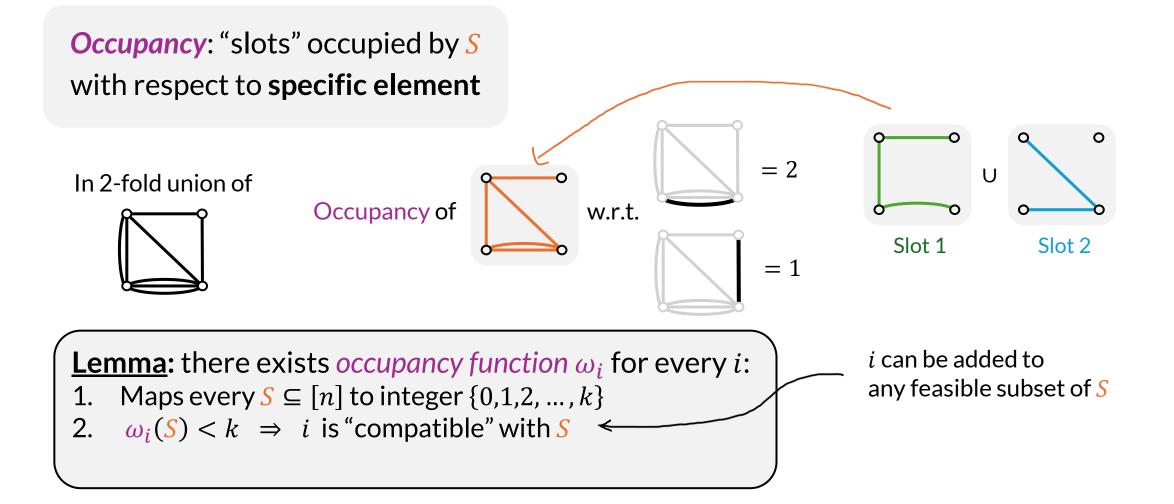


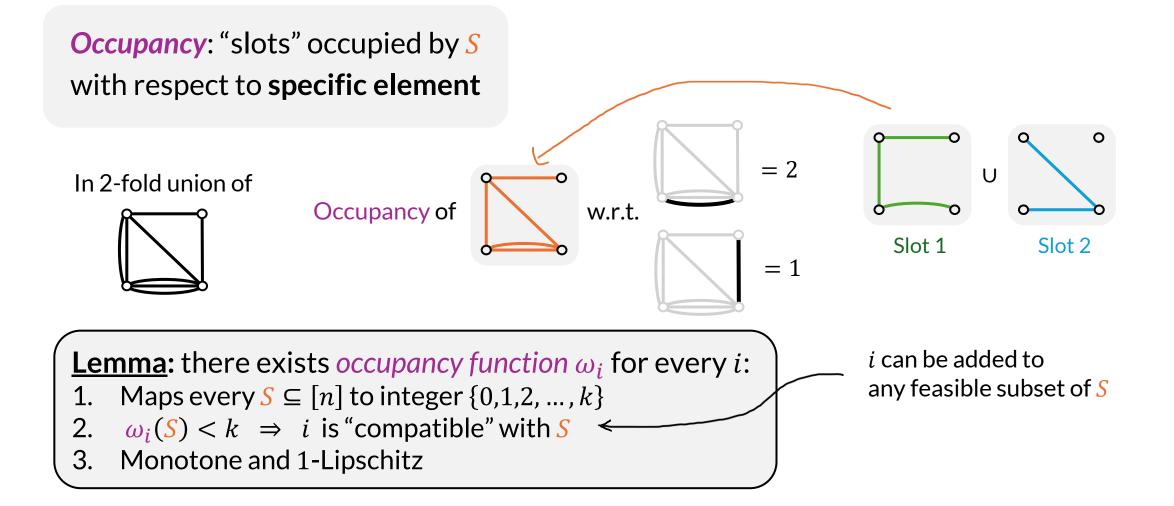


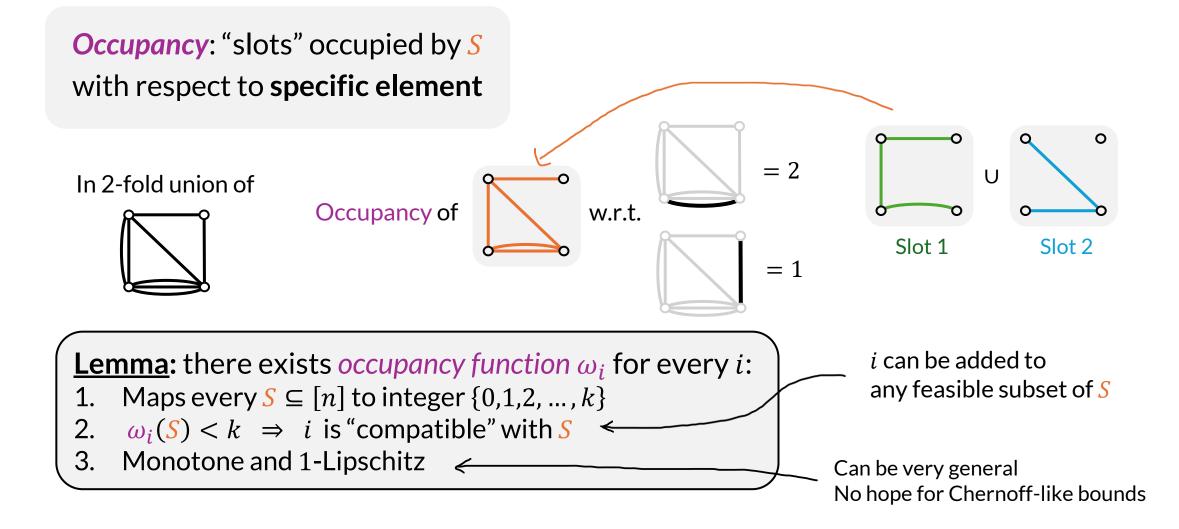


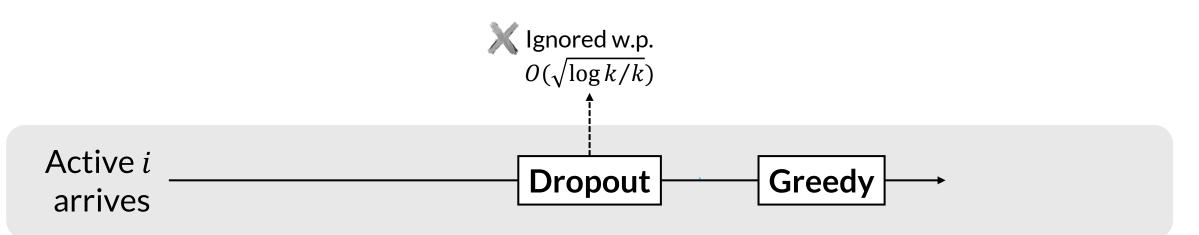


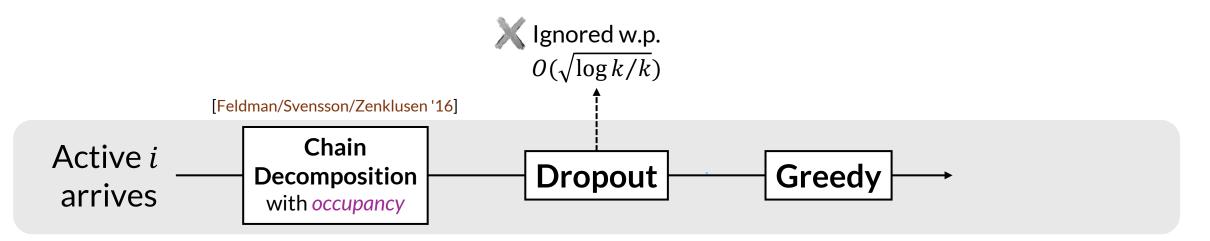


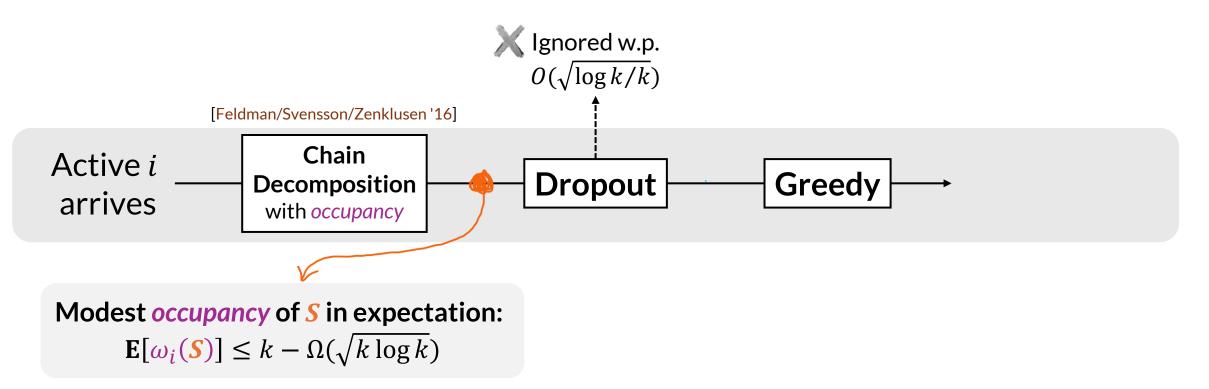


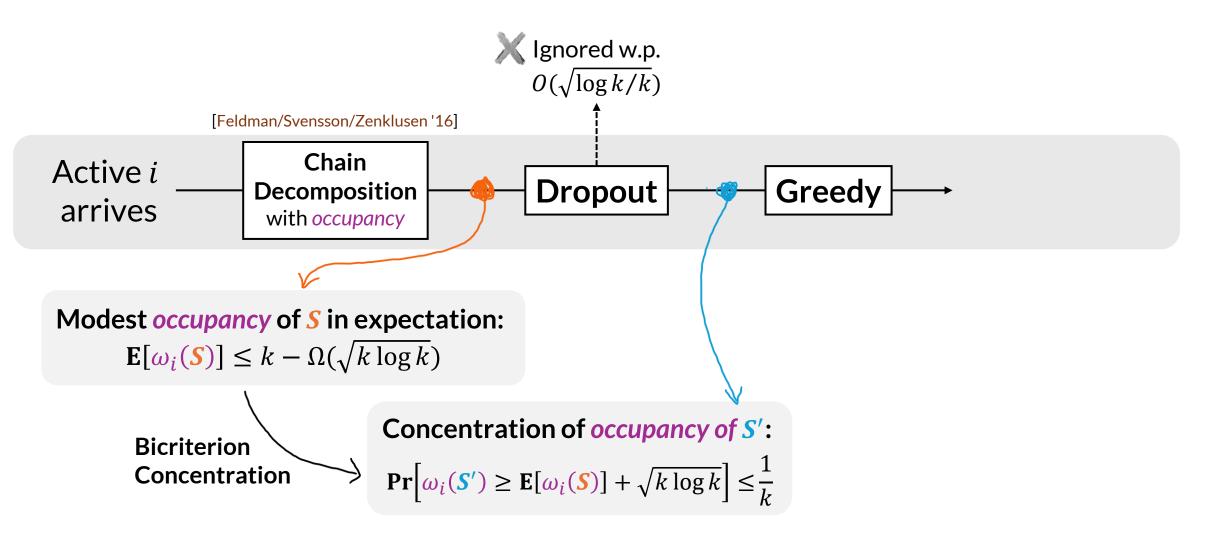


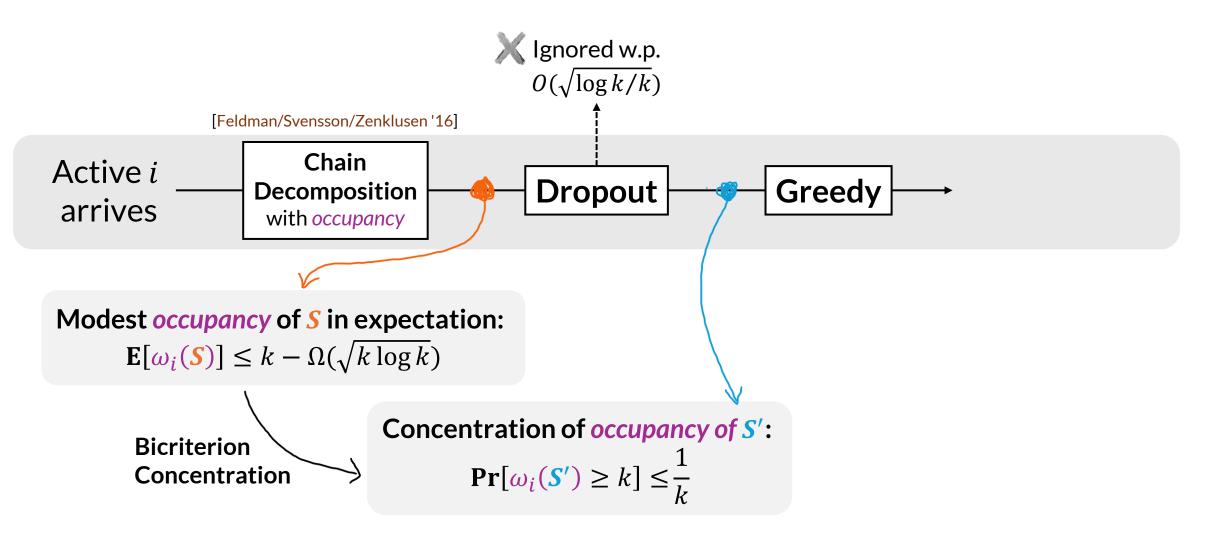


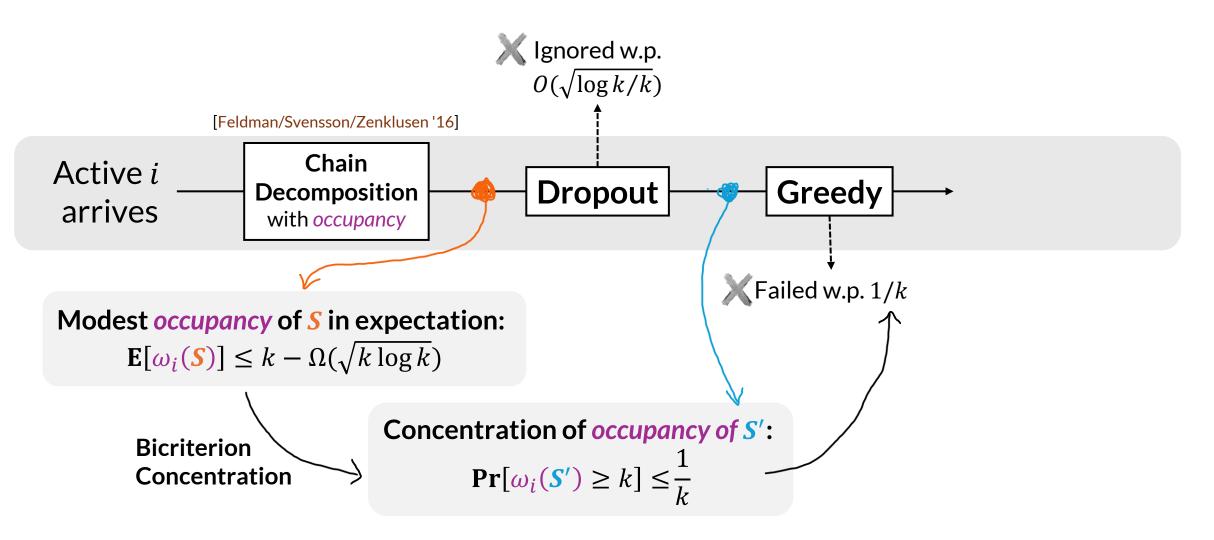


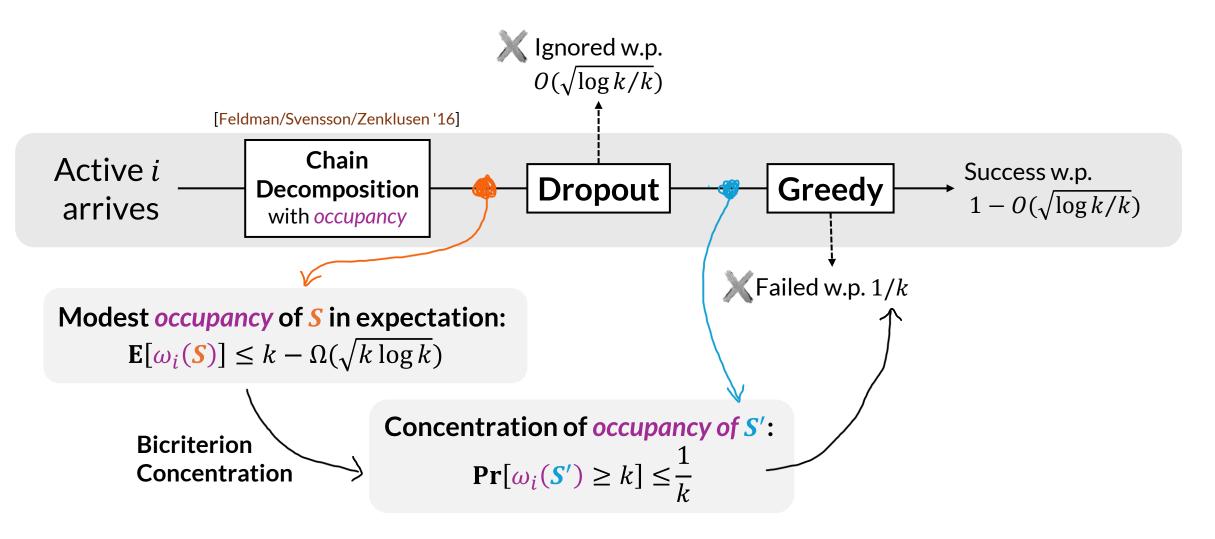












<u>Theorem</u>: $\forall s \in [0,1], t > 0$ $\Pr[f(\mathbf{X}^{(s)}) \ge \mathbf{E}[f(\mathbf{X})] + t] \le e^{-st}$

"Chernoff-strength" *bicriterion* concentration

<u>Theorem</u>: $\forall s \in [0,1], t > 0$ $\Pr[f(\mathbf{X}^{(s)}) \ge \mathbf{E}[f(\mathbf{X})] + t] \le e^{-st}$

"Chernoff-strength" *bicriterion* concentration

<u>Theorem</u>: $\forall k, \varepsilon$, no $(\frac{1}{2} + \varepsilon)$ -competitive algorithm for a graphical matroid $\mathcal{F}_{k,\varepsilon}$ of girth k

Large girth does not suffice for $(1 - \varepsilon)$ -prophet inequality

<u>Theorem</u>: $\forall s \in [0,1], t > 0$ $\Pr[f(\mathbf{X}^{(s)}) \ge \mathbf{E}[f(\mathbf{X})] + t] \le e^{-st}$

"Chernoff-strength" *bicriterion* concentration

<u>Theorem</u>: $\forall k, \varepsilon$, no $(\frac{1}{2} + \varepsilon)$ -competitive algorithm for a graphical matroid $\mathcal{F}_{k,\varepsilon}$ of girth k

Large girth does not suffice for $(1 - \varepsilon)$ -prophet inequality

<u>**Theorem:</u>** There is $(1 - O(\sqrt{\frac{\log k}{k}}))$ -competitive algorithm for any *k*-fold matroid union \mathcal{F}^k </u>

But *k*-fold matroid unions do

<u>Theorem</u>: $\forall s \in [0,1], t > 0$ $\Pr[f(\mathbf{X}^{(s)}) \ge \mathbf{E}[f(\mathbf{X})] + t] \le e^{-st}$

for any k-fold matroid union \mathcal{F}^k

"Chernoff-strength" *bicriterion* concentration

<u>Theorem</u>: $\forall k, \varepsilon$, no $(\frac{1}{2} + \varepsilon)$ -competitive algorithm for a graphical matroid $\mathcal{F}_{k,\varepsilon}$ of girth k

<u>**Theorem:</u>** There is $(1 - O(\sqrt{\frac{\log k}{k}}))$ -competitive algorithm</u>

Large girth does not suffice for $(1 - \varepsilon)$ -prophet inequality

But *k*-fold matroid unions do

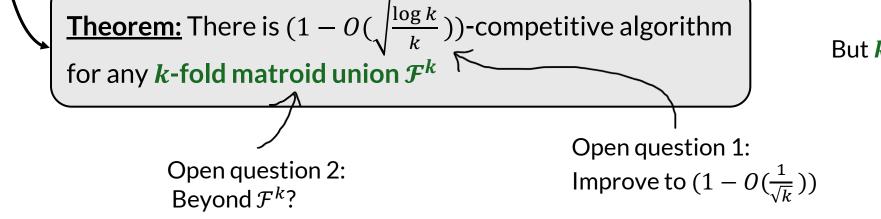
```
Open question 1:
Improve to (1 - O(\frac{1}{\sqrt{k}}))
```

<u>Theorem</u>: $\forall s \in [0,1], t > 0$ $\Pr[f(\mathbf{X}^{(s)}) \ge \mathbf{E}[f(\mathbf{X})] + t] \le e^{-st}$

"Chernoff-strength" *bicriterion* concentration

<u>Theorem</u>: $\forall k, \varepsilon$, no $(\frac{1}{2} + \varepsilon)$ -competitive algorithm for a graphical matroid $\mathcal{F}_{k,\varepsilon}$ of girth k

Large girth does not suffice for $(1 - \varepsilon)$ -prophet inequality



<u>Theorem</u>: $\forall s \in [0,1], t > 0$ $\Pr[f(\mathbf{X}^{(s)}) \ge \mathbf{E}[f(\mathbf{X})] + t] \le e^{-st}$

"Chernoff-strength" *bicriterion* concentration

<u>Theorem</u>: $\forall k, \varepsilon$, no $(\frac{1}{2} + \varepsilon)$ -competitive algorithm for a graphical matroid $\mathcal{F}_{k,\varepsilon}$ of girth k

Large girth does not suffice for $(1 - \varepsilon)$ -prophet inequality

