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“Chernoff-strength” bicriterion concentration

Large girth does not suffice
for 1 − 𝜀 -prophet inequality

But 𝒌-fold matroid unions do

Theorem: ∀𝑠 ∈ 0,1 , 𝑡 > 0

𝐏𝐫 𝑓 𝑿 𝒔 ≥ 𝐄 𝑓 𝑿 + 𝑡 ≤ 𝑒−𝑠𝑡

Theorem: ∀𝑘, 𝜀, no (
1

2
+ 𝜀)-competitive algorithm for 

a graphical matroid ℱ𝑘,𝜀  of girth 𝒌

Theorem: There is (1 − 𝑂(
log 𝑘

𝑘
 ))-competitive algorithm 

for any 𝒌-fold matroid union 𝓕𝒌 
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𝑓 𝒙 − 𝑓 𝒚 ≤ 𝒙 − 𝒚 1

“Flipping a single input bit
change output by ≤ 1.”

Focus on upper tail & small deviation 𝑡 < 𝜇
𝐏𝐫 𝑓 𝑿 ≥ 𝜇 + 𝑡 ≤ ?
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𝐏𝐫 𝑓 𝑿 ≥ 𝜇 + 𝑡 ≤ 𝑒−
2𝑡2

𝑛

𝑓: 0,1 𝑛 → ℝ that is

• 1-Lipschitz

Implies  standard deviation

 𝜎 = 𝑂 𝑛

In general, impossible to get
“Chernoff-strength” bound

∃ 1-Lipschitz 𝑓 such that 𝑓 𝑿 :
• (Small expectation) 𝜇 ≪ 𝑛
• (Large deviation) 𝜎 = 𝑛
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What conditions on 𝓕 suffice for 
(𝟏 − 𝜺)-competitive prophet inequality?

ℱ = 𝑆: 𝑆 ≤ 𝑘
“Accept ≤ 𝑘 items”

What makes 𝒌-uniform matroid easy?
• Because of a large girth?
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Theorem: ∀𝑘, 𝜀, no (
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2
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Can be very general
No hope for Chernoff-like bounds
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Thank you!
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