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Single-Item OCRS

▶ Input: integer n, vector x , and n elements’ statuses (being active or not).
▶ Statuses are given in an online fashion, revealed one by one from 1 to n.
▶ Each element i is active independently w.p. xi , where

∑
i∈[n] xi ≤ 1.

▶ Task: Accept a single active candidate (immediately and irrevocably).

▶ An OCRS is c-selectable if

Pr[i accepted by OCRS | i active] ≥ c for all i ∈ U.

▶ 1
2 is the upper bound for selectability:

1 2

1

x1 = 1− ϵ x2 = ϵ

Should accept 1 with probability 1
2 precisely!

▶ An OCRS is oblivious if x is not given.

▶ A 1
4-selectable oblivious OCRS: Always accept w.p. 1

2 whenever possible.
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History

1. CRS is first formalized by Chekuri, Vondrák, Zenklusen [CVZ14] for rounding
fractional solutions in submodular function maximization.

2. OCRS is introduced by Feldman, Svensson, Zenklusen [FSZ16]. It turns out to be
a powerful tool for a wide range of applications in Bayesian and stochastic online
optimization problems, such as prophet inequalities and stochastic probing.
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Our Results

1. We give a simple yet optimal 1
e -selectable oblivious single-item OCRS.

2. We show that no good CRS or OCRS with O(1) samples exists for graphic or
transversal matroids.
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A 1
e -selectable Oblivious Single-Item OCRS

▶ The OCRS:
▶ Accept the first active element w.p. 1

2 .

▶ If has rejected the first active one, always accept the second active one.

▶ Analysis: 1
e -selectable by direct calculation

Pr[i accepted | i active] = 1

2

∏
j<i

(1− xj) +
∑
j<i

xj
∏

k<i ,k ̸=j

(1− xk)

 ≥ 1

e
.

▶ Minimum is obtained via tha uniform instance x = ( 1n ,
1
n , . . . ,

1
n )

1 2 3 · · · · · · n

n

x1 =
1
n x2 =

1
n x3 =

1
n xn = 1

n
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Optimality among Counting-Based Strategies

▶ A counting-based strategy with an infinite sequence of probabilities (p1, p2, . . . ):

When the OCRS sees the k-th active element,
it accepts (and stops) with probability pk .

▶ The 1
4 -selectable OCRS: a counting-based strategy with probabilities(

1

2
,
1

2
,
1

2
, . . .

)
.

▶ The 1
e -selectable OCRS: a counting-based strategy with probabilities(

1

2
, 1, 0, 0, . . .

)
.

▶ No counting-based strategy can do better than 1
e on uniform instances!
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From Counting-Based Strategies to General Strategies

▶ Any oblivious OCRS A for size-N input can be characterized by fA : 2[N] → [0, 1]:

fA(T ) = Pr[A accepts (maxT )-th element | T is the set of active elements so far].

▶ Can general strategies be approximated by counting-based strategies?

▶ i.e., can we find a subset of indices S ⊆ [N] where A behaves just like a
counting-based strategy C?

Definition ((ϵ, k)-approximation)

An oblivious OCRS A is (ϵ, k)-approximate to a counting-based strategy C on S if

fA(T ) ∈ [p|T |, p|T | + ϵ] for all T ⊆ S and |T | ≤ k ,

where (p1, p2, · · · ) is the probability sequence of C .
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Optimality in General

Lemma (Any oblivious OCRS is partly counting-based, informal)

For any oblivious OCRS A of size-N input, we can always find a subset S ⊆ [N] and a
counting-based strategy C , such that A is (ϵ, |S |)-approximate to C on S .
Moreover, |S | can be arbitrarily large, as long as N is sufficiently large.

▶ Base case: find S1 such that A is (ϵ, 1)-approximate to C on S1.

▶ Let ϵ = 1
4 , N = 5.

▶ Color element i with color ⌊ 1
ϵ fA({i})⌋.

▶ By pigeonhole principle, such S1 of size at least 2 exists.
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fA({i})

fA({i})
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[14 ,
1
2) [0, 14) [12 ,

3
4) [14 ,

1
2) [34 , 1]
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Optimality in General (cont’d)

▶ Suppose (ϵ, 1)-approximation is possible on S1.

▶ How to achieve (ϵ, 2)-approximation on some S2 ⊆ S1?

▶ Let ϵ = 1
2 , |S1| = 6.

We only need to consider subsets of size = 2.

▶ Color edge (i , j) with color ⌊ 1
ϵ fA({i , j})⌋.

▶ By Ramsey Theorem, such S2 of size at least 3 exists. (R(3, 3) = 6).

fA(·) < 1/2

fA(·) ≥ 1/2

1 2 3 4 5 6

1 2 3 4 5 61 4 5
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▶ By Ramsey Theorem, such S2 of size at least 3 exists. (R(3, 3) = 6).

fA(·) < 1/2

fA(·) ≥ 1/2
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Optimality in General (cont’d)

Hypergraph Ramsey Theorem

For a sufficiently large N (w.r.t. k, c ,m), any complete k-uniform hypergraph with
more than N vertices and c colors has a monochromatic clique of size m.

Proof Sketch of the Lemma
Given ϵ,m, for N and oblivious OCRS A of size-N input,

Pigeonhole principle ⇒ (ϵ, 1)-approximation on S1 ⊆ [N]

⇓
Ramsey Theorem ⇒ (ϵ, 2)-approximation on S2 ⊆ S1

⇓
Ramsey Theorem for
3-uniform hypergraph

⇒ (ϵ, 3)-approximation on S3 ⊆ S2

...
...
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Optimality in General (cont’d)

Theorem
For any ϵ > 0, no single-item oblivious OCRS is (1e + ϵ)-selectable.

1. Show no counting-based strategy can be strictly better than 1
e -selectable.

2. Prove for any oblivious OCRS, there must be a subset of elements on which it
behaves like a counting-based strategy.

3. Embed the hard instance into the subset, hence the hard instance for
counting-based strategies applies to all oblivious schemes.
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Impossiblity of Oblivious CRS/OCRS for General Matroids

Theorem
For any c ∈ (0, 1], there is no oblivious c-balanced CRS
for graphic matroids or transversal matroids.
Moreover, the impossibility persists even if the CRS has
access to O(1) samples of the random set R of active
elements.

▶ Idea: hide some always-active elements.

▶ E.g., in the graphical matroid (U,F), let
(u4, v1), (u4, v2), (u4, v3) be active w.p. 1, while
other edges are active with a small probability 1

M .

▶ If N ≫ MM , these elements will be instinguishable
from others!

u1

u2

u3

u4

u5

v1

v2

v3

U = {edges}
F = {spanning forests}
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