Oblivious Online Contention Resolution Schemes

$\begin{array}{ccc} & Hu \ Fu^1 & Pinyan \ Lu^1 & Zhihao \ Gavin \ Tang^1 \\ Abner \ Turkieltaub^2 & Hongxun \ Wu^3 & Jinzhao \ Wu^4 & {\bf Qianfan \ Zhang^3} \end{array}$

¹ITCS, Shanghai University of Finance and Economics

²University of British Columbia

³IIIS, Tsinghua University

⁴Peking University

- **Input**: integer *n*, vector *x*, and *n* elements' statuses (being active or not).
 - Statuses are given in an **online** fashion, revealed one by one from 1 to *n*.
 - Each element *i* is active independently w.p. x_i , where $\sum_{i \in [n]} x_i \le 1$.

- **Input**: integer *n*, vector *x*, and *n* elements' statuses (being active or not).
 - Statuses are given in an **online** fashion, revealed one by one from 1 to *n*.
 - ▶ Each element *i* is active independently w.p. x_i , where $\sum_{i \in [n]} x_i \leq 1$.

Task: Accept a single active candidate (immediately and irrevocably).

- ▶ Input: integer *n*, vector *x*, and *n* elements' statuses (being active or not).
 - Statuses are given in an **online** fashion, revealed one by one from 1 to *n*.
 - Each element *i* is active independently w.p. x_i , where $\sum_{i \in [n]} x_i \leq 1$.
- **Task**: Accept a **single** active candidate (immediately and irrevocably).
- An OCRS is c-selectable if

 $\Pr[i \text{ accepted by OCRS} \mid i \text{ active}] \ge c \text{ for all } i \in U.$

- ▶ Input: integer *n*, vector *x*, and *n* elements' statuses (being active or not).
 - Statuses are given in an **online** fashion, revealed one by one from 1 to *n*.
 - ▶ Each element *i* is active independently w.p. x_i , where $\sum_{i \in [n]} x_i \leq 1$.
- **Task**: Accept a **single** active candidate (immediately and irrevocably).
- An OCRS is c-selectable if

 $\Pr[i \text{ accepted by OCRS} \mid i \text{ active}] \ge c \text{ for all } i \in U.$

• $\frac{1}{2}$ is the upper bound for selectability:

$$(\widehat{1}) \qquad (\widehat{2}) \\ x_1 = 1 - \epsilon \qquad x_2 = \epsilon$$

- ▶ Input: integer *n*, vector *x*, and *n* elements' statuses (being active or not).
 - Statuses are given in an **online** fashion, revealed one by one from 1 to *n*.
 - ▶ Each element *i* is active independently w.p. x_i , where $\sum_{i \in [n]} x_i \leq 1$.
- **Task**: Accept a **single** active candidate (immediately and irrevocably).
- An OCRS is *c*-selectable if

 $\Pr[i \text{ accepted by OCRS} \mid i \text{ active}] \ge c \text{ for all } i \in U.$

• $\frac{1}{2}$ is the upper bound for selectability:

- ▶ Input: integer *n*, vector *x*, and *n* elements' statuses (being active or not).
 - Statuses are given in an **online** fashion, revealed one by one from 1 to *n*.
 - ▶ Each element *i* is active independently w.p. x_i , where $\sum_{i \in [n]} x_i \leq 1$.
- **Task**: Accept a single active candidate (immediately and irrevocably).
- An OCRS is c-selectable if

 $\Pr[i \text{ accepted by OCRS} \mid i \text{ active}] \ge c \text{ for all } i \in U.$

• $\frac{1}{2}$ is the upper bound for selectability:

(2) Should accept 1 with probability $\frac{1}{2}$ precisely!

$$x_1 = 1 - \epsilon$$
 $x_2 = \epsilon$

- ▶ Input: integer *n*, vector *x*, and *n* elements' statuses (being active or not).
 - Statuses are given in an **online** fashion, revealed one by one from 1 to *n*.
 - ▶ Each element *i* is active independently w.p. x_i , where $\sum_{i \in [n]} x_i \leq 1$.
- **Task**: Accept a **single** active candidate (immediately and irrevocably).
- An OCRS is *c*-selectable if

 $\Pr[i \text{ accepted by OCRS} \mid i \text{ active}] \ge c \text{ for all } i \in U.$

• $\frac{1}{2}$ is the upper bound for selectability:

1 (2) Should accept 1 with probability $\frac{1}{2}$ precisely! $x_1 = 1 - \epsilon$ $x_2 = \epsilon$

An OCRS is **oblivious** if *x* is not given.

- **Input**: integer *n*, vector *x*, and *n* elements' statuses (being active or not).
 - Statuses are given in an **online** fashion, revealed one by one from 1 to *n*.
 - ▶ Each element *i* is active independently w.p. x_i , where $\sum_{i \in [n]} x_i \leq 1$.
- **Task**: Accept a **single** active candidate (immediately and irrevocably).
- An OCRS is c-selectable if

 $\Pr[i \text{ accepted by OCRS} \mid i \text{ active}] \geq c$ for all $i \in U$.

 \blacktriangleright $\frac{1}{2}$ is the upper bound for selectability:

1 (2) Should accept 1 with probability $\frac{1}{2}$ precisely!

 $x_1 = 1 - \epsilon$ $x_2 = \epsilon$

An OCRS is oblivious if x is not given.

A $\frac{1}{4}$ -selectable oblivious OCRS: Always accept w.p. $\frac{1}{2}$ whenever possible.

History

- 1. CRS is first formalized by Chekuri, Vondrák, Zenklusen [CVZ14] for rounding fractional solutions in submodular function maximization.
- 2. OCRS is introduced by Feldman, Svensson, Zenklusen [FSZ16]. It turns out to be a powerful tool for a wide range of applications in Bayesian and stochastic online optimization problems, such as prophet inequalities and stochastic probing.

- 1. We give a simple yet optimal $\frac{1}{e}$ -selectable oblivious single-item OCRS.
- 2. We show that no good CRS or OCRS with O(1) samples exists for graphic or transversal matroids.

► The OCRS:

• Accept the first active element w.p. $\frac{1}{2}$.

► The OCRS:

- Accept the first active element w.p. $\frac{1}{2}$.
- If has rejected the first active one, always accept the second active one.

The OCRS:

- Accept the first active element w.p. $\frac{1}{2}$.
- If has rejected the first active one, always accept the second active one.

• Analysis: $\frac{1}{e}$ -selectable by direct calculation

$$\mathsf{Pr}[i \text{ accepted} \mid i \text{ active}] = \frac{1}{2} \left[\prod_{j < i} (1 - x_j) + \sum_{j < i} x_j \prod_{k < i, k \neq j} (1 - x_k) \right] \ge \frac{1}{e}.$$

The OCRS:

- Accept the first active element w.p. $\frac{1}{2}$.
- If has rejected the first active one, always accept the second active one.

• Analysis: $\frac{1}{e}$ -selectable by direct calculation

$$\mathsf{Pr}[i \text{ accepted} \mid i \text{ active}] = \frac{1}{2} \left[\prod_{j < i} (1 - x_j) + \sum_{j < i} x_j \prod_{k < i, k \neq j} (1 - x_k) \right] \geq \frac{1}{e}.$$

• Minimum is obtained via tha uniform instance $\mathbf{x} = (\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n})$

The OCRS:

- Accept the first active element w.p. $\frac{1}{2}$.
- If has rejected the first active one, always accept the second active one.

• Analysis: $\frac{1}{e}$ -selectable by direct calculation

$$\mathsf{Pr}[i \text{ accepted} \mid i \text{ active}] = \frac{1}{2} \left[\prod_{j < i} (1 - x_j) + \sum_{j < i} x_j \prod_{k < i, k \neq j} (1 - x_k) \right] \geq \frac{1}{e}.$$

• Minimum is obtained via tha uniform instance $\mathbf{x} = (\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n})$

$$(\widehat{1}) \qquad (\widehat{2}) \qquad (\widehat{3}) \qquad \cdots \cdots \qquad n$$
$$x_1 = \frac{1}{n} \qquad x_2 = \frac{1}{n} \qquad x_3 = \frac{1}{n} \qquad x_n = \frac{1}{n}$$

Optimality among Counting-Based Strategies

▶ A **counting-based strategy** with an infinite sequence of probabilities (*p*₁, *p*₂, ...):

When the OCRS sees the k-th active element, it accepts (and stops) with probability p_k .

Optimality among Counting-Based Strategies

- A counting-based strategy with an infinite sequence of probabilities (p₁, p₂,...): When the OCRS sees the k-th active element, it accepts (and stops) with probability p_k.
- The $\frac{1}{4}$ -selectable OCRS: a counting-based strategy with probabilities

$$\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\ldots\right).$$

The $\frac{1}{e}$ -selectable OCRS: a counting-based strategy with probabilities

$$\left(\frac{1}{2},1,0,0,\ldots\right).$$

Optimality among Counting-Based Strategies

- A counting-based strategy with an infinite sequence of probabilities (p₁, p₂,...): When the OCRS sees the k-th active element, it accepts (and stops) with probability p_k.
- The $\frac{1}{4}$ -selectable OCRS: a counting-based strategy with probabilities

$$\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\dots\right).$$

The $\frac{1}{e}$ -selectable OCRS: a counting-based strategy with probabilities

$$\left(\frac{1}{2},1,0,0,\ldots\right).$$

• No counting-based strategy can do better than $\frac{1}{e}$ on uniform instances!

From Counting-Based Strategies to General Strategies

▶ Any oblivious OCRS A for size-N input can be characterized by $f_A : 2^{[N]} \rightarrow [0, 1]$:

 $f_A(T) = \Pr[A \text{ accepts (max } T)\text{-th element } | T \text{ is the set of active elements so far}].$

From Counting-Based Strategies to General Strategies

▶ Any oblivious OCRS A for size-N input can be characterized by $f_A : 2^{[N]} \rightarrow [0, 1]$:

 $f_A(T) = \Pr[A \text{ accepts } (\max T) \text{-th element} | T \text{ is the set of active elements so far}].$

- Can general strategies be approximated by counting-based strategies?
 - i.e., can we find a subset of indices S ⊆ [N] where A behaves just like a counting-based strategy C?

From Counting-Based Strategies to General Strategies

▶ Any oblivious OCRS A for size-N input can be characterized by $f_A : 2^{[N]} \rightarrow [0, 1]$:

 $f_A(T) = \Pr[A \text{ accepts } (\max T) \text{-th element } | T \text{ is the set of active elements so far}].$

- Can general strategies be approximated by counting-based strategies?
 - ▶ i.e., can we find a subset of indices S ⊆ [N] where A behaves just like a counting-based strategy C?

Definition ((ϵ , k)-approximation)

An oblivious OCRS A is (ϵ, k) -approximate to a counting-based strategy C on S if

$$f_A(T) \in [p_{|T|}, p_{|T|} + \epsilon]$$
 for all $T \subseteq S$ and $|T| \le k$,

where (p_1, p_2, \cdots) is the probability sequence of *C*.

Lemma (Any oblivious OCRS is partly counting-based, informal) For any oblivious OCRS A of size-N input, we can always find a subset $S \subseteq [N]$ and a counting-based strategy C, such that A is $(\epsilon, |S|)$ -approximate to C on S. Moreover, |S| can be arbitrarily large, as long as N is sufficiently large.

Lemma (Any oblivious OCRS is partly counting-based, informal)

For any oblivious OCRS A of size-N input, we can always find a subset $S \subseteq [N]$ and a counting-based strategy C, such that A is $(\epsilon, |S|)$ -approximate to C on S. Moreover, |S| can be arbitrarily large, as long as N is sufficiently large.

• Having the lemma, one can easily embed the hard instances to these subsets and prove the general $\frac{1}{e}$ lower bound.

Lemma (Any oblivious OCRS is partly counting-based, informal) For any oblivious OCRS A of size-N input, we can always find a subset $S \subseteq [N]$ and a counting-based strategy C, such that A is $(\epsilon, |S|)$ -approximate to C on S. Moreover, |S| can be arbitrarily large, as long as N is sufficiently large.

▶ Base case: find S_1 such that A is $(\epsilon, 1)$ -approximate to C on S_1 .

Lemma (Any oblivious OCRS is partly counting-based, informal)

For any oblivious OCRS A of size-N input, we can always find a subset $S \subseteq [N]$ and a counting-based strategy C, such that A is $(\epsilon, |S|)$ -approximate to C on S. Moreover, |S| can be arbitrarily large, as long as N is sufficiently large.

▶ Base case: find S_1 such that A is $(\epsilon, 1)$ -approximate to C on S_1 .

• Let
$$\epsilon = \frac{1}{4}$$
, $N = 5$.

$$(\widehat{1}) \qquad (\widehat{2}) \qquad (\widehat{3}) \qquad (\widehat{4}) \qquad (\widehat{5}) \\ f_A(\{i\}) \qquad 0.4 \qquad 0.1 \qquad 0.7 \qquad 0.3 \qquad 1.0$$

Lemma (Any oblivious OCRS is partly counting-based, informal)

For any oblivious OCRS A of size-N input, we can always find a subset $S \subseteq [N]$ and a counting-based strategy C, such that A is $(\epsilon, |S|)$ -approximate to C on S. Moreover, |S| can be arbitrarily large, as long as N is sufficiently large.

▶ Base case: find S_1 such that A is $(\epsilon, 1)$ -approximate to C on S_1 .

• Let
$$\epsilon = \frac{1}{4}$$
, $N = 5$

• Color element *i* with color $\lfloor \frac{1}{\epsilon} f_A(\{i\}) \rfloor$.

Lemma (Any oblivious OCRS is partly counting-based, informal)

For any oblivious OCRS A of size-N input, we can always find a subset $S \subseteq [N]$ and a counting-based strategy C, such that A is $(\epsilon, |S|)$ -approximate to C on S. Moreover, |S| can be arbitrarily large, as long as N is sufficiently large.

▶ Base case: find S_1 such that A is $(\epsilon, 1)$ -approximate to C on S_1 .

• Let
$$\epsilon = \frac{1}{4}$$
, $N = 5$

• Color element *i* with color $\lfloor \frac{1}{\epsilon} f_A(\{i\}) \rfloor$.

Lemma (Any oblivious OCRS is partly counting-based, informal)

For any oblivious OCRS A of size-N input, we can always find a subset $S \subseteq [N]$ and a counting-based strategy C, such that A is $(\epsilon, |S|)$ -approximate to C on S. Moreover, |S| can be arbitrarily large, as long as N is sufficiently large.

▶ Base case: find S_1 such that A is $(\epsilon, 1)$ -approximate to C on S_1 .

• Let
$$\epsilon = \frac{1}{4}$$
, $N = 5$.

- Color element *i* with color $\lfloor \frac{1}{\epsilon} f_A(\{i\}) \rfloor$.
- By pigeonhole principle, such S_1 of size at least 2 exists.

Lemma (Any oblivious OCRS is partly counting-based, informal)

For any oblivious OCRS A of size-N input, we can always find a subset $S \subseteq [N]$ and a counting-based strategy C, such that A is $(\epsilon, |S|)$ -approximate to C on S. Moreover, |S| can be arbitrarily large, as long as N is sufficiently large.

▶ Base case: find S_1 such that A is $(\epsilon, 1)$ -approximate to C on S_1 .

• Let
$$\epsilon = \frac{1}{4}$$
, $N = 5$.

- Color element *i* with color $\lfloor \frac{1}{\epsilon} f_A(\{i\}) \rfloor$.
- By pigeonhole principle, such S₁ of size at least 2 exists.

Suppose $(\epsilon, 1)$ -approximation is possible on S_1 .

- Suppose $(\epsilon, 1)$ -approximation is possible on S_1 .
- ▶ How to achieve (ϵ , 2)-approximation on some $S_2 \subseteq S_1$?

- Suppose $(\epsilon, 1)$ -approximation is possible on S_1 .
- ▶ How to achieve (ϵ , 2)-approximation on some $S_2 \subseteq S_1$?

• Let
$$\epsilon = \frac{1}{2}$$
, $|S_1| = 6$.

 $(\widehat{1})$ $(\widehat{2})$ $(\widehat{3})$ $(\widehat{4})$ $(\widehat{5})$ $(\widehat{6})$

- Suppose $(\epsilon, 1)$ -approximation is possible on S_1 .
- ▶ How to achieve (ϵ , 2)-approximation on some $S_2 \subseteq S_1$?

• Let
$$\epsilon = \frac{1}{2}$$
, $|S_1| = 6$.

- Suppose $(\epsilon, 1)$ -approximation is possible on S_1 .
- ▶ How to achieve (ϵ , 2)-approximation on some $S_2 \subseteq S_1$?
 - Let $\epsilon = \frac{1}{2}$, $|S_1| = 6$. We only need to consider subsets of size = 2.

- Suppose $(\epsilon, 1)$ -approximation is possible on S_1 .
- ▶ How to achieve (ϵ , 2)-approximation on some $S_2 \subseteq S_1$?
 - Let ε = 1/2, |S₁| = 6. We only need to consider subsets of size = 2.
 Color edge (i, j) with color [1/ε f_A({i, j})].

- Suppose $(\epsilon, 1)$ -approximation is possible on S_1 .
- ▶ How to achieve (ϵ , 2)-approximation on some $S_2 \subseteq S_1$?
 - Let $\epsilon = \frac{1}{2}$, $|S_1| = 6$. We only need to consider subsets of size = 2.
 - Color edge (i,j) with color $\lfloor \frac{1}{\epsilon} f_A(\{i,j\}) \rfloor$.
 - By Ramsey Theorem, such S_2 of size at least 3 exists. (R(3,3) = 6).

- Suppose $(\epsilon, 1)$ -approximation is possible on S_1 .
- ▶ How to achieve (ϵ , 2)-approximation on some $S_2 \subseteq S_1$?
 - Let $\epsilon = \frac{1}{2}$, $|S_1| = 6$. We only need to consider subsets of size = 2.
 - Color edge (i,j) with color $\lfloor \frac{1}{\epsilon} f_A(\{i,j\}) \rfloor$.
 - ▶ By Ramsey Theorem, such S_2 of size at least 3 exists. (R(3,3) = 6).

 $f_A(\cdot) < 1/2 \\ f_A(\cdot) \ge 1/2$

Hypergraph Ramsey Theorem

For a sufficiently large N (w.r.t. k, c, m), any complete k-uniform hypergraph with more than N vertices and c colors has a monochromatic clique of size m.

Hypergraph Ramsey Theorem

For a sufficiently large N (w.r.t. k, c, m), any complete k-uniform hypergraph with more than N vertices and c colors has a monochromatic clique of size m.

Proof Sketch of the Lemma

Given ϵ , m, for N and oblivious OCRS A of size-N input,

Pigeonhole principle \Rightarrow (ϵ , 1)-approximation on $S_1 \subseteq [N]$

Hypergraph Ramsey Theorem

For a sufficiently large N (w.r.t. k, c, m), any complete k-uniform hypergraph with more than N vertices and c colors has a monochromatic clique of size m.

Proof Sketch of the Lemma

Given ϵ , m, for N and oblivious OCRS A of size-N input,

Hypergraph Ramsey Theorem

For a sufficiently large N (w.r.t. k, c, m), any complete k-uniform hypergraph with more than N vertices and c colors has a monochromatic clique of size m.

Proof Sketch of the Lemma

Given ϵ , m, for N and oblivious OCRS A of size-N input,

3-uniform hypergraph

Pigeonhole principle \Rightarrow (ϵ , 1)-approximation on $S_1 \subseteq [N]$ \Downarrow Ramsey Theorem for \Rightarrow (ϵ , 2)-approximation on $S_2 \subseteq S_1$ \Downarrow Ramsey Theorem for \Rightarrow (ϵ , 3)-approximation on $S_3 \subseteq S_2$

Hypergraph Ramsey Theorem

For a sufficiently large N (w.r.t. k, c, m), any complete k-uniform hypergraph with more than N vertices and c colors has a monochromatic clique of size m.

Proof Sketch of the Lemma

Given ϵ , m, for N and oblivious OCRS A of size-N input,

Hypergraph Ramsey Theorem

For a sufficiently large N (w.r.t. k, c, m), any complete k-uniform hypergraph with more than N vertices and c colors has a monochromatic clique of size m.

Proof Sketch of the Lemma

Given ϵ , m, for sufficiently large N and oblivious OCRS A of size-N input,

Theorem

For any $\epsilon > 0$, no single-item oblivious OCRS is $(\frac{1}{e} + \epsilon)$ -selectable.

Theorem

For any $\epsilon > 0$, no single-item oblivious OCRS is $(\frac{1}{e} + \epsilon)$ -selectable.

- 1. Show no counting-based strategy can be strictly better than $\frac{1}{e}$ -selectable.
- 2. Prove for any oblivious OCRS, there must be a subset of elements on which it behaves like a counting-based strategy.
- 3. Embed the hard instance into the subset, hence the hard instance for counting-based strategies applies to all oblivious schemes.

Theorem

Theorem

For any $c \in (0, 1]$, there is no oblivious c-balanced CRS for graphic matroids or transversal matroids. Moreover, the impossibility persists even if the CRS has access to O(1) samples of the random set R of active elements.

Idea: hide some always-active elements.

Theorem

- Idea: hide some always-active elements.
- ► E.g., in the graphical matroid (U, F), let (u₄, v₁), (u₄, v₂), (u₄, v₃) be active w.p. 1, while other edges are active with a small probability ¹/_M.

Theorem

- Idea: hide some always-active elements.
- ► E.g., in the graphical matroid (U, F), let (u₄, v₁), (u₄, v₂), (u₄, v₃) be active w.p. 1, while other edges are active with a small probability ¹/_M.

Theorem

- Idea: hide some always-active elements.
- E.g., in the graphical matroid (U, F), let (u₄, v₁), (u₄, v₂), (u₄, v₃) be active w.p. 1, while other edges are active with a small probability ¹/_M.
- If N >> M^M, these elements will be instinguishable from others!

- [CVZ14] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular function maximization via the multilinear relaxation and contention resolution schemes. SIAM J. Comput., 43(6):1831–1879, 2014.
- [FSZ16] Moran Feldman, Ola Svensson, and Rico Zenklusen. Online contention resolution schemes. In Robert Krauthgamer, editor, <u>Proceedings of the</u> <u>Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,</u> <u>SODA 2016, Arlington, VA, USA, January 10-12, 2016</u>, pages 1014–1033. SIAM, 2016.