Oblivious Online Contention Resolution Schemes

Hu Fu ${ }^{1} \quad$ Pinyan Lu ${ }^{1} \quad$ Zhihao Gavin Tang ${ }^{1}$ Abner Turkieltaub ${ }^{2}$ Hongxun Wu^{3} Jinzhao Wu^{4} Qianfan Zhang ${ }^{3}$
${ }^{1}$ ITCS, Shanghai University of Finance and Economics
${ }^{2}$ University of British Columbia
${ }^{3}$ IIIS, Tsinghua University
${ }^{4}$ Peking University

Single-Item OCRS

- Input: integer n, vector \boldsymbol{x}, and n elements' statuses (being active or not).
- Statuses are given in an online fashion, revealed one by one from 1 to n.
- Each element i is active independently w.p. x_{i}, where $\sum_{i \in[n]} x_{i} \leq 1$.

Single-Item OCRS

- Input: integer n, vector \boldsymbol{x}, and n elements' statuses (being active or not).
- Statuses are given in an online fashion, revealed one by one from 1 to n.
- Each element i is active independently w.p. x_{i}, where $\sum_{i \in[n]} x_{i} \leq 1$.
- Task: Accept a single active candidate (immediately and irrevocably).

Single-Item OCRS

- Input: integer n, vector \boldsymbol{x}, and n elements' statuses (being active or not).
- Statuses are given in an online fashion, revealed one by one from 1 to n.
- Each element i is active independently w.p. x_{i}, where $\sum_{i \in[n]} x_{i} \leq 1$.
- Task: Accept a single active candidate (immediately and irrevocably).
- An OCRS is c-selectable if

$$
\operatorname{Pr}[i \text { accepted by OCRS } \mid i \text { active }] \geq c \quad \text { for all } i \in U
$$

Single-Item OCRS

- Input: integer n, vector \boldsymbol{x}, and n elements' statuses (being active or not).
- Statuses are given in an online fashion, revealed one by one from 1 to n.
- Each element i is active independently w.p. x_{i}, where $\sum_{i \in[n]} x_{i} \leq 1$.
- Task: Accept a single active candidate (immediately and irrevocably).
- An OCRS is c-selectable if

$$
\operatorname{Pr}[i \text { accepted by OCRS } \mid i \text { active }] \geq c \quad \text { for all } i \in U
$$

- $\frac{1}{2}$ is the upper bound for selectability:

$$
\begin{array}{cc}
11 & 2 \\
x_{1}=1-\epsilon & x_{2}=\epsilon
\end{array}
$$

Single-Item OCRS

- Input: integer n, vector \boldsymbol{x}, and n elements' statuses (being active or not).
- Statuses are given in an online fashion, revealed one by one from 1 to n.
- Each element i is active independently w.p. x_{i}, where $\sum_{i \in[n]} x_{i} \leq 1$.
- Task: Accept a single active candidate (immediately and irrevocably).
- An OCRS is c-selectable if

$$
\operatorname{Pr}[i \text { accepted by OCRS } \mid i \text { active }] \geq c \quad \text { for all } i \in U
$$

- $\frac{1}{2}$ is the upper bound for selectability:

$$
x_{1}=1-\epsilon \quad x_{2}=\epsilon
$$

Single-Item OCRS

- Input: integer n, vector \boldsymbol{x}, and n elements' statuses (being active or not).
- Statuses are given in an online fashion, revealed one by one from 1 to n.
- Each element i is active independently w.p. x_{i}, where $\sum_{i \in[n]} x_{i} \leq 1$.
- Task: Accept a single active candidate (immediately and irrevocably).
- An OCRS is c-selectable if

$$
\operatorname{Pr}[i \text { accepted by OCRS } \mid i \text { active }] \geq c \quad \text { for all } i \in U
$$

- $\frac{1}{2}$ is the upper bound for selectability:

$$
\begin{array}{ll}
1 & 2 \\
x_{1}=1-\epsilon \quad & x_{2}=\epsilon
\end{array}
$$

Single-Item OCRS

- Input: integer n, vector \boldsymbol{x}, and n elements' statuses (being active or not).
- Statuses are given in an online fashion, revealed one by one from 1 to n.
- Each element i is active independently w.p. x_{i}, where $\sum_{i \in[n]} x_{i} \leq 1$.
- Task: Accept a single active candidate (immediately and irrevocably).
- An OCRS is c-selectable if

$$
\operatorname{Pr}[i \text { accepted by OCRS } \mid i \text { active }] \geq c \quad \text { for all } i \in U
$$

- $\frac{1}{2}$ is the upper bound for selectability:

$$
\begin{aligned}
& 1 \text { (1) } \quad \text { Should accept } 1 \text { with probability } \frac{1}{2} \text { precisely! } \\
& x_{1}=1-\epsilon \quad x_{2}=\epsilon
\end{aligned}
$$

- An OCRS is oblivious if \boldsymbol{x} is not given.

Single-Item OCRS

- Input: integer n, vector \boldsymbol{x}, and n elements' statuses (being active or not).
- Statuses are given in an online fashion, revealed one by one from 1 to n.
- Each element i is active independently w.p. x_{i}, where $\sum_{i \in[n]} x_{i} \leq 1$.
- Task: Accept a single active candidate (immediately and irrevocably).
- An OCRS is c-selectable if

$$
\operatorname{Pr}[i \text { accepted by OCRS } \mid i \text { active }] \geq c \quad \text { for all } i \in U
$$

- $\frac{1}{2}$ is the upper bound for selectability:

$$
\begin{aligned}
& 1 \text { (1) } \quad \text { Should accept } 1 \text { with probability } \frac{1}{2} \text { precisely! } \\
& x_{1}=1-\epsilon \quad x_{2}=\epsilon
\end{aligned}
$$

- An OCRS is oblivious if \boldsymbol{x} is not given.
- A $\frac{1}{4}$-selectable oblivious OCRS: Always accept w.p. $\frac{1}{2}$ whenever possible.

History

1. CRS is first formalized by Chekuri, Vondrák, Zenklusen [CVZ14] for rounding fractional solutions in submodular function maximization.
2. OCRS is introduced by Feldman, Svensson, Zenklusen [FSZ16]. It turns out to be a powerful tool for a wide range of applications in Bayesian and stochastic online optimization problems, such as prophet inequalities and stochastic probing.

Our Results

1. We give a simple yet optimal $\frac{1}{e}$-selectable oblivious single-item OCRS.
2. We show that no good CRS or OCRS with $O(1)$ samples exists for graphic or transversal matroids.

A $\frac{1}{e}$-selectable Oblivious Single-Item OCRS

- The OCRS:
- Accept the first active element w.p. $\frac{1}{2}$.

A $\frac{1}{e}$-selectable Oblivious Single-Item OCRS

- The OCRS:
- Accept the first active element w.p. $\frac{1}{2}$.
- If has rejected the first active one, always accept the second active one.

A $\frac{1}{e}$-selectable Oblivious Single-Item OCRS

- The OCRS:
- Accept the first active element w.p. $\frac{1}{2}$.
- If has rejected the first active one, always accept the second active one.
- Analysis: $\frac{1}{e}$-selectable by direct calculation

$$
\operatorname{Pr}[i \text { accepted } \mid i \text { active }]=\frac{1}{2}\left[\prod_{j<i}\left(1-x_{j}\right)+\sum_{j<i} x_{j} \prod_{k<i, k \neq j}\left(1-x_{k}\right)\right] \geq \frac{1}{e} .
$$

A $\frac{1}{e}$-selectable Oblivious Single-Item OCRS

- The OCRS:
- Accept the first active element w.p. $\frac{1}{2}$.
- If has rejected the first active one, always accept the second active one.
- Analysis: $\frac{1}{e}$-selectable by direct calculation

$$
\operatorname{Pr}[i \text { accepted } \mid i \text { active }]=\frac{1}{2}\left[\prod_{j<i}\left(1-x_{j}\right)+\sum_{j<i} x_{j} \prod_{k<i, k \neq j}\left(1-x_{k}\right)\right] \geq \frac{1}{e}
$$

- Minimum is obtained via tha uniform instance $\boldsymbol{x}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$
'1
$x_{1}=\frac{1}{n}$
!
-

$\cdots . . \begin{aligned} & n \\ & n \\ & \vdots\end{aligned}$
$x_{2}=\frac{1}{n}$
$x_{3}=\frac{1}{n}$

$$
x_{n}=\frac{1}{n}
$$

A $\frac{1}{e}$-selectable Oblivious Single-Item OCRS

- The OCRS:
- Accept the first active element w.p. $\frac{1}{2}$.
- If has rejected the first active one, always accept the second active one.
- Analysis: $\frac{1}{e}$-selectable by direct calculation

$$
\operatorname{Pr}[i \text { accepted } \mid i \text { active }]=\frac{1}{2}\left[\prod_{j<i}\left(1-x_{j}\right)+\sum_{j<i} x_{j} \prod_{k<i, k \neq j}\left(1-x_{k}\right)\right] \geq \frac{1}{e}
$$

- Minimum is obtained via tha uniform instance $\boldsymbol{x}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$
:
$x_{1}=\frac{1}{n}$
-

.....

$x_{2}=\frac{1}{n}$
$x_{3}=\frac{1}{n}$

$$
x_{n}=\frac{1}{n}
$$

Optimality among Counting-Based Strategies

- A counting-based strategy with an infinite sequence of probabilities $\left(p_{1}, p_{2}, \ldots\right)$:

When the OCRS sees the k-th active element, it accepts (and stops) with probability p_{k}.

Optimality among Counting-Based Strategies

- A counting-based strategy with an infinite sequence of probabilities $\left(p_{1}, p_{2}, \ldots\right)$:

When the OCRS sees the k-th active element, it accepts (and stops) with probability p_{k}.

- The $\frac{1}{4}$-selectable OCRS: a counting-based strategy with probabilities

$$
\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \ldots\right)
$$

- The $\frac{1}{e}$-selectable OCRS: a counting-based strategy with probabilities

$$
\left(\frac{1}{2}, 1,0,0, \ldots\right)
$$

Optimality among Counting-Based Strategies

- A counting-based strategy with an infinite sequence of probabilities $\left(p_{1}, p_{2}, \ldots\right)$:

When the OCRS sees the k-th active element, it accepts (and stops) with probability p_{k}.

- The $\frac{1}{4}$-selectable OCRS: a counting-based strategy with probabilities

$$
\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \ldots\right)
$$

- The $\frac{1}{e}$-selectable OCRS: a counting-based strategy with probabilities

$$
\left(\frac{1}{2}, 1,0,0, \ldots\right)
$$

- No counting-based strategy can do better than $\frac{1}{e}$ on uniform instances!

From Counting-Based Strategies to General Strategies

- Any oblivious OCRS A for size- N input can be characterized by $f_{A}: 2^{[N]} \rightarrow[0,1]$: $f_{A}(T)=\operatorname{Pr}[A$ accepts $(\max T)$-th element $\mid T$ is the set of active elements so far $]$.

From Counting-Based Strategies to General Strategies

- Any oblivious OCRS A for size- N input can be characterized by $f_{A}: 2^{[N]} \rightarrow[0,1]$:
$f_{A}(T)=\operatorname{Pr}[A$ accepts $(\max T)$-th element $\mid T$ is the set of active elements so far $]$.
- Can general strategies be approximated by counting-based strategies?
- i.e., can we find a subset of indices $S \subseteq[N]$ where A behaves just like a counting-based strategy C ?

From Counting-Based Strategies to General Strategies

- Any oblivious OCRS A for size- N input can be characterized by $f_{A}: 2^{[N]} \rightarrow[0,1]$:
$f_{A}(T)=\operatorname{Pr}[A$ accepts $(\max T)$-th element $\mid T$ is the set of active elements so far $]$.
- Can general strategies be approximated by counting-based strategies?
- i.e., can we find a subset of indices $S \subseteq[N]$ where A behaves just like a counting-based strategy C ?

Definition ((ϵ, k)-approximation)
An oblivious OCRS A is (ϵ, k)-approximate to a counting-based strategy C on S if

$$
f_{A}(T) \in\left[p_{|T|}, p_{|T|}+\epsilon\right] \quad \text { for all } T \subseteq S \text { and }|T| \leq k,
$$

where $\left(p_{1}, p_{2}, \cdots\right)$ is the probability sequence of C.

Optimality in General

Lemma (Any oblivious OCRS is partly counting-based, informal)
For any oblivious OCRS A of size- N input, we can always find a subset $S \subseteq[N]$ and a counting-based strategy C, such that A is $(\epsilon,|S|)$-approximate to C on S. Moreover, $|S|$ can be arbitrarily large, as long as N is sufficiently large.

Optimality in General

Lemma (Any oblivious OCRS is partly counting-based, informal)
For any oblivious OCRS A of size- N input, we can always find a subset $S \subseteq[N]$ and a counting-based strategy C, such that A is $(\epsilon,|S|)$-approximate to C on S.
Moreover, $|S|$ can be arbitrarily large, as long as N is sufficiently large.

- Having the lemma, one can easily embed the hard instances to these subsets and prove the general $\frac{1}{e}$ lower bound.

Optimality in General

Lemma (Any oblivious OCRS is partly counting-based, informal)
For any oblivious OCRS A of size- N input, we can always find a subset $S \subseteq[N]$ and a counting-based strategy C, such that A is $(\epsilon,|S|)$-approximate to C on S.
Moreover, $|S|$ can be arbitrarily large, as long as N is sufficiently large.

- Base case: find S_{1} such that A is $(\epsilon, 1)$-approximate to C on S_{1}.

Optimality in General

Lemma (Any oblivious OCRS is partly counting-based, informal)
For any oblivious OCRS A of size- N input, we can always find a subset $S \subseteq[N]$ and a counting-based strategy C, such that A is $(\epsilon,|S|)$-approximate to C on S. Moreover, $|S|$ can be arbitrarily large, as long as N is sufficiently large.

- Base case: find S_{1} such that A is $(\epsilon, 1)$-approximate to C on S_{1}.
- Let $\epsilon=\frac{1}{4}, N=5$.

	,	-	3	- 4	5
$f_{A}(\{i\})$	0.4	0.1	0.7	0.3	1.0

Optimality in General

Lemma (Any oblivious OCRS is partly counting-based, informal)
For any oblivious OCRS A of size- N input, we can always find a subset $S \subseteq[N]$ and a counting-based strategy C, such that A is $(\epsilon,|S|)$-approximate to C on S. Moreover, $|S|$ can be arbitrarily large, as long as N is sufficiently large.

- Base case: find S_{1} such that A is $(\epsilon, 1)$-approximate to C on S_{1}.
- Let $\epsilon=\frac{1}{4}, N=5$.
- Color element i with color $\left\lfloor\frac{1}{\epsilon} f_{A}(\{i\})\right\rfloor$.

$$
\begin{array}{cccccc}
& 1 & 2 & 3 & 4 & 5 \\
f_{A}(\{i\}) & {\left[\frac{1}{4}, \frac{1}{2}\right)} & {\left[0, \frac{1}{4}\right)} & {\left[\frac{1}{2}, \frac{3}{4}\right)} & {\left[\frac{1}{4}, \frac{1}{2}\right)} & {\left[\frac{3}{4}, 1\right]}
\end{array}
$$

Optimality in General

Lemma (Any oblivious OCRS is partly counting-based, informal)
For any oblivious OCRS A of size- N input, we can always find a subset $S \subseteq[N]$ and a counting-based strategy C, such that A is $(\epsilon,|S|)$-approximate to C on S. Moreover, $|S|$ can be arbitrarily large, as long as N is sufficiently large.

- Base case: find S_{1} such that A is $(\epsilon, 1)$-approximate to C on S_{1}.
- Let $\epsilon=\frac{1}{4}, N=5$.
- Color element i with color $\left\lfloor\frac{1}{\epsilon} f_{A}(\{i\})\right\rfloor$.

$$
f_{A}(\{i\}) \quad\left[\frac{1}{4}, \frac{1}{2}\right)
$$

$\left[\frac{1}{2}, \frac{3}{4}\right)$
4

(1, $\left.\frac{1}{4}, \frac{2}{2}\right)$
$\left[\frac{3}{4}, 1\right]$

Optimality in General

Lemma (Any oblivious OCRS is partly counting-based, informal)
For any oblivious OCRS A of size- N input, we can always find a subset $S \subseteq[N]$ and a counting-based strategy C, such that A is $(\epsilon,|S|)$-approximate to C on S.
Moreover, $|S|$ can be arbitrarily large, as long as N is sufficiently large.

- Base case: find S_{1} such that A is $(\epsilon, 1)$-approximate to C on S_{1}.
- Let $\epsilon=\frac{1}{4}, N=5$.
- Color element i with color $\left\lfloor\frac{1}{\epsilon} f_{A}(\{i\})\right\rfloor$.
- By pigeonhole principle, such S_{1} of size at least 2 exists.

$$
f_{A}(\{i\}) \quad\left[\frac{1}{4}, \frac{1}{2}\right)
$$

$\left[\frac{1}{2}, \frac{3}{4}\right)$
$\left[0, \frac{1}{4}\right)$

4
$\left[\frac{1}{4}, \frac{1}{2}\right)$
$\left[\frac{3}{4}, 1\right]$

Optimality in General

Lemma (Any oblivious OCRS is partly counting-based, informal)
For any oblivious OCRS A of size- N input, we can always find a subset $S \subseteq[N]$ and a counting-based strategy C, such that A is $(\epsilon,|S|)$-approximate to C on S.
Moreover, $|S|$ can be arbitrarily large, as long as N is sufficiently large.

- Base case: find S_{1} such that A is $(\epsilon, 1)$-approximate to C on S_{1}.
- Let $\epsilon=\frac{1}{4}, N=5$.
- Color element i with color $\left\lfloor\frac{1}{\epsilon} f_{A}(\{i\})\right\rfloor$.
- By pigeonhole principle, such \mathbf{S}_{1} of size at least 2 exists.

Optimality in General (cont'd)

- Suppose $(\epsilon, 1)$-approximation is possible on S_{1}.

Optimality in General (cont'd)

- Suppose $(\epsilon, 1)$-approximation is possible on S_{1}.
- How to achieve ($\epsilon, 2$)-approximation on some $S_{2} \subseteq S_{1}$?

Optimality in General (cont'd)

- Suppose $(\epsilon, 1)$-approximation is possible on S_{1}.
- How to achieve ($\epsilon, 2$)-approximation on some $S_{2} \subseteq S_{1}$?
- Let $\epsilon=\frac{1}{2},\left|S_{1}\right|=6$.

Optimality in General (cont'd)

- Suppose $(\epsilon, 1)$-approximation is possible on S_{1}.
- How to achieve ($\epsilon, 2$)-approximation on some $S_{2} \subseteq S_{1}$?
- Let $\epsilon=\frac{1}{2},\left|S_{1}\right|=6$.
$f_{A}(\cdot)<1 / 2$
$\square f_{A}(\cdot) \geq 1 / 2$

Optimality in General (cont'd)

- Suppose $(\epsilon, 1)$-approximation is possible on S_{1}.
- How to achieve ($\epsilon, 2$)-approximation on some $S_{2} \subseteq S_{1}$?
- Let $\epsilon=\frac{1}{2},\left|S_{1}\right|=6$. We only need to consider subsets of size $=2$.

Optimality in General (cont'd)

- Suppose $(\epsilon, 1)$-approximation is possible on S_{1}.
- How to achieve ($\epsilon, 2$)-approximation on some $S_{2} \subseteq S_{1}$?
- Let $\epsilon=\frac{1}{2},\left|S_{1}\right|=6$. We only need to consider subsets of size $=2$.
- Color edge (i, j) with color $\left\lfloor\frac{1}{\epsilon} f_{A}(\{i, j\})\right\rfloor$.

Optimality in General (cont'd)

- Suppose $(\epsilon, 1)$-approximation is possible on S_{1}.
- How to achieve ($\epsilon, 2$)-approximation on some $S_{2} \subseteq S_{1}$?
- Let $\epsilon=\frac{1}{2},\left|S_{1}\right|=6$. We only need to consider subsets of size $=2$.
- Color edge (i, j) with color $\left\lfloor\frac{1}{\epsilon} f_{A}(\{i, j\})\right\rfloor$.
- By Ramsey Theorem, such S_{2} of size at least 3 exists. $(R(3,3)=6)$.

Optimality in General (cont'd)

- Suppose $(\epsilon, 1)$-approximation is possible on S_{1}.
- How to achieve ($\epsilon, 2$)-approximation on some $S_{2} \subseteq S_{1}$?
- Let $\epsilon=\frac{1}{2},\left|S_{1}\right|=6$. We only need to consider subsets of size $=2$.
- Color edge (i, j) with color $\left\lfloor\frac{1}{\epsilon} f_{A}(\{i, j\})\right\rfloor$.
- By Ramsey Theorem, such $\mathbf{S}_{\mathbf{2}}$ of size at least 3 exists. $(R(3,3)=6)$.

$\square f_{A}(\cdot)<1 / 2$
$\square f_{A}(\cdot) \geq 1 / 2$

Optimality in General (cont'd)

Hypergraph Ramsey Theorem
For a sufficiently large N (w.r.t. k, c, m), any complete k-uniform hypergraph with more than N vertices and c colors has a monochromatic clique of size m.

Optimality in General (cont'd)

Hypergraph Ramsey Theorem
For a sufficiently large N (w.r.t. k, c, m), any complete k-uniform hypergraph with more than N vertices and c colors has a monochromatic clique of size m.

Proof Sketch of the Lemma
Given ϵ, m, for N and oblivious OCRS A of size- N input,

$$
\text { Pigeonhole principle } \quad \Rightarrow \quad(\epsilon, 1) \text {-approximation on } S_{1} \subseteq[N]
$$

Optimality in General (cont'd)

Hypergraph Ramsey Theorem
For a sufficiently large N (w.r.t. k, c, m), any complete k-uniform hypergraph with more than N vertices and c colors has a monochromatic clique of size m.

Proof Sketch of the Lemma

Given ϵ, m, for N and oblivious OCRS A of size- N input,

$$
\begin{array}{ll}
\text { Pigeonhole principle } & \Rightarrow(\epsilon, 1) \text {-approximation on } S_{1} \subseteq[N] \\
\Downarrow \\
\text { Ramsey Theorem } & \Rightarrow(\epsilon, 2) \text {-approximation on } S_{2} \subseteq S_{1}
\end{array}
$$

Optimality in General (cont'd)

Hypergraph Ramsey Theorem

For a sufficiently large N (w.r.t. k, c, m), any complete k-uniform hypergraph with more than N vertices and c colors has a monochromatic clique of size m.

Proof Sketch of the Lemma

Given ϵ, m, for N and oblivious OCRS A of size- N input,

Pigeonhole principle	\Rightarrow	$(\epsilon, 1)$-approximation on $S_{1} \subseteq[N]$
\Downarrow		
Ramsey Theorem	$\Rightarrow(\epsilon, 2)$-approximation on $S_{2} \subseteq S_{1}$	
\Downarrow		
Ramsey Theorem for		
3-uniform hypergraph	\Rightarrow	$(\epsilon, 3)$-approximation on $S_{3} \subseteq S_{2}$

Optimality in General (cont'd)

Hypergraph Ramsey Theorem

For a sufficiently large N (w.r.t. k, c, m), any complete k-uniform hypergraph with more than N vertices and c colors has a monochromatic clique of size m.

Proof Sketch of the Lemma
Given ϵ, m, for N and oblivious OCRS A of size- N input,
Pigeonhole principle $\quad \Rightarrow \quad(\epsilon, 1)$-approximation on $S_{1} \subseteq[N]$
\Downarrow
Ramsey Theorem $\quad \Rightarrow \quad(\epsilon, 2)$-approximation on $S_{2} \subseteq S_{1}$ \Downarrow
Ramsey Theorem for 3-uniform hypergraph

Ramsey Theorem for
m-uniform hypergraph $\Rightarrow(\epsilon, m)$-approximation on $S_{m} \subseteq S_{m-1}$

Optimality in General (cont'd)

Hypergraph Ramsey Theorem

For a sufficiently large N (w.r.t. k, c, m), any complete k-uniform hypergraph with more than N vertices and c colors has a monochromatic clique of size m.

Proof Sketch of the Lemma
Given ϵ, m, for sufficiently large N and oblivious OCRS A of size- N input,
Pigeonhole principle $\quad \Rightarrow \quad(\epsilon, 1)$-approximation on $S_{1} \subseteq[N]$
\Downarrow
Ramsey Theorem $\quad \Rightarrow \quad(\epsilon, 2)$-approximation on $S_{2} \subseteq S_{1}$ \Downarrow
Ramsey Theorem for 3-uniform hypergraph

Ramsey Theorem for
m-uniform hypergraph $\Rightarrow \quad(\epsilon, \mathbf{m})$-approximation on \mathbf{S} of size \mathbf{m}

Optimality in General (cont'd)

Theorem
For any $\epsilon>0$, no single-item oblivious OCRS is $\left(\frac{1}{e}+\epsilon\right)$-selectable.

Optimality in General (cont'd)

Theorem

For any $\epsilon>0$, no single-item oblivious OCRS is $\left(\frac{1}{e}+\epsilon\right)$-selectable.

1. Show no counting-based strategy can be strictly better than $\frac{1}{e}$-selectable.
2. Prove for any oblivious OCRS, there must be a subset of elements on which it behaves like a counting-based strategy.
3. Embed the hard instance into the subset, hence the hard instance for counting-based strategies applies to all oblivious schemes.

Impossiblity of Oblivious CRS/OCRS for General Matroids

[^0]
Impossiblity of Oblivious CRS/OCRS for General Matroids

Theorem

For any $c \in(0,1]$, there is no oblivious c-balanced $C R S$ for graphic matroids or transversal matroids. Moreover, the impossibility persists even if the CRS has access to $O(1)$ samples of the random set R of active elements.

- Idea: hide some always-active elements.

Impossiblity of Oblivious CRS/OCRS for General Matroids

Theorem

For any $c \in(0,1]$, there is no oblivious c-balanced $C R S$ for graphic matroids or transversal matroids. Moreover, the impossibility persists even if the CRS has access to $O(1)$ samples of the random set R of active elements.

- Idea: hide some always-active elements.
- E.g., in the graphical matroid (U, \mathcal{F}), let $\left(u_{4}, v_{1}\right),\left(u_{4}, v_{2}\right),\left(u_{4}, v_{3}\right)$ be active w.p. 1 , while other edges are active with a small probability $\frac{1}{M}$.

$$
\begin{aligned}
& U=\{\text { edges }\} \\
& \mathcal{F}=\{\text { spanning forests }\}
\end{aligned}
$$

Impossiblity of Oblivious CRS/OCRS for General Matroids

Theorem

For any $c \in(0,1]$, there is no oblivious c-balanced $C R S$ for graphic matroids or transversal matroids.
Moreover, the impossibility persists even if the CRS has access to $O(1)$ samples of the random set R of active elements.

- Idea: hide some always-active elements.
- E.g., in the graphical matroid (U, \mathcal{F}), let $\left(u_{4}, v_{1}\right),\left(u_{4}, v_{2}\right),\left(u_{4}, v_{3}\right)$ be active w.p. 1, while other edges are active with a small probability $\frac{1}{M}$.

$$
\begin{aligned}
& U=\{\text { edges }\} \\
& \mathcal{F}=\{\text { spanning forests }\}
\end{aligned}
$$

Impossiblity of Oblivious CRS/OCRS for General Matroids

Theorem

For any $c \in(0,1]$, there is no oblivious c-balanced $C R S$ for graphic matroids or transversal matroids.
Moreover, the impossibility persists even if the CRS has access to $O(1)$ samples of the random set R of active elements.

- Idea: hide some always-active elements.
- E.g., in the graphical matroid (U, \mathcal{F}), let $\left(u_{4}, v_{1}\right),\left(u_{4}, v_{2}\right),\left(u_{4}, v_{3}\right)$ be active w.p. 1, while other edges are active with a small probability $\frac{1}{M}$.
- If $N \gg M^{M}$, these elements will be instinguishable from others!

$$
\begin{aligned}
& U=\{\text { edges }\} \\
& \mathcal{F}=\{\text { spanning forests }\}
\end{aligned}
$$

References I

[CVZ14] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular function maximization via the multilinear relaxation and contention resolution schemes. SIAM J. Comput., 43(6):1831-1879, 2014.
[FSZ16] Moran Feldman, Ola Svensson, and Rico Zenklusen. Online contention resolution schemes. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1014-1033. SIAM, 2016.

[^0]: Theorem
 For any $c \in(0,1]$, there is no oblivious c-balanced $C R S$ for graphic matroids or transversal matroids.
 Moreover, the impossibility persists even if the CRS has access to $O(1)$ samples of the random set R of active elements.

